Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multidrug permeases and subcellular cholesterol transport

Key Points

  • The intercellular distribution and transport of cholesterol is a well-characterized process. However, the specific events that characterize the intracellular movement and distribution of cholesterol and other lipids are only poorly understood.

  • Low-density lipoprotein (LDL) particles carry cholesterol and other lipids from the liver to peripheral tissues, whereas high-density lipoprotein (HDL) particles facilitate the transport of these lipids from peripheral tissues back to the liver.

  • LDL particles are endocytosed and broken down in the endosomal–lysosomal system. Free cholesterol and presumably other lipid components of these particles exit the endosomal system and are transported to the plasma membrane.

  • From the plasma membrane, cholesterol can be transported to the endoplasmic reticulum and other intracellular sites. In addition, a plasma membrane ABC-type transporter facilitates the efflux of cholesterol and phospholipids onto HDL particles.

  • More than 10 ABC-type transporters are now known to facilitate the movement of cholesterol and other lipids across membrane bilayers. Their defective activities are associated with several diseases, exemplified by defects in the ABCA1 transporter that was recently shown to cause Tangier disease.

  • A member of a second family of transporters (RND), which depend on a proton motive force gradient for their function, was recently shown to reside in late endosomes where it facilitates lipid exit from this compartment. The defective action of this protein, NPC1, causes NPC1 disease, an autosomal-recessive lipidosis.

  • Recently, two other proteins, MLN64 and NPC2 were shown to reside in the endosomal–lysosomal system and might be involved in cholesterol and other lipid efflux from this system.

  • Increasing our understanding of the function of ABC and RND transporters in mammalian cells and their involvement in lipid transport and homeostasis should reveal the mechanisms of subcellular lipid movement and homeostasis, and should add to our understanding of disease pathogenesis when these transporters malfunction.

Abstract

Studies of Niemann–Pick C (NPC) and Tangier diseases have led to the identification of the causative genes, NPC1 and ABCA1, respectively. Characterization of their protein products shows that NPC1 and ABCA1 are permeases that belong to two different superfamilies of efflux pumps, which might be important in subcellular lipid and cholesterol transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of low- and high-density lipoprotein particles.
Figure 2: Main routes of intracellular cholesterol movement.
Figure 3: Cholesterol products.
Figure 4: Topology of ABCA and RND-type permeases.
Figure 5: Sterol-regulatory-element-binding proteins.
Figure 6: Cholesterol movement facilitators.
Figure 7: The Hedgehog–Patched–Smoothened pathway.

Similar content being viewed by others

References

  1. Brown, M. S. & Goldstein, J. L. A receptor mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Lange, Y. & Steck, T. L. The role of intracellular cholesterol transport in cholesterol homeostasis. Trends Cell Biol. 6, 205–208 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Liscum, L. & Underwood, K. W. Intracellular cholesterol transport and compartmentation. J. Biol. Chem. 270, 15443–15446 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Hampton, R., Dimster-Denk, D. & Rine, J. The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem. Sci. 21, 140–145 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Roitelman, J., Olender, E. H., Bar-Nun, S., Dunn, W. A. Jr & Simoni, R. D. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum. J. Cell Biol. 117, 959–973 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Gil, G., Faust, J. R., Chin, D. J., Goldstein, J. L. & Brown, M. S. Membrane-bound domain of HMG-CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell 41, 249–258 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Chang, C. C., Huh, H. Y., Cadigan, K. M. & Chang, T. Y. Molecular cloning and functional expression of human acyl-coenzyme A: cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J. Biol. Chem. 268, 20747–20755 (1993).

    CAS  PubMed  Google Scholar 

  8. Havel, R. J. & Kane, J. P. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 2705–2716 (McGraw–Hill, New York, 2001).

    Google Scholar 

  9. Dawson, G., Kruski, A. W. & Scanu, A. M. Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias. J. Lipid Res. 17, 125–131 (1976).

    CAS  PubMed  Google Scholar 

  10. Liscum, L. Compartmentation of cholesterol within the cell. Curr. Opin. Lipidol. 5, 221–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Schroeder, F. et al. Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc. Soc. Exp. Biol. Med. 213, 150–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. DeGrella, R. F. & Simoni, R. D. Intracellular transport of cholesterol to the plasma membrane. J. Biol. Chem. 257, 14256–14262 (1982).

    CAS  PubMed  Google Scholar 

  13. Urbani, L. & Simoni, R. D. Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. J. Biol. Chem. 265, 1919–1923 (1990).

    CAS  PubMed  Google Scholar 

  14. Kaplan, M. R. & Simoni, R. D. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J. Cell Biol. 101, 446–453 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Neufeld, E. B. et al. Intracellular trafficking of cholesterol monitored with a cyclodextrin. J. Biol. Chem. 271, 21604–21613 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Spillane, D. M., Reagan, J. W. Jr, Kennedy, N. J., Scheidner, D. L. & Chang, T.-Y. Translocation of both lysosomal LDL-derived cholesterol and plasma membrane cholesterol to the endoplasmic reticulum for esterification may require common cellular factors involved in cholesterol egress from the acidic compartments (lysosomes/endosomes). Biochim. Biophys. Acta 1254, 283–294 (1995).

    Article  PubMed  Google Scholar 

  17. Cruz, J. C., Sugii, S., Yu, C. & Chang, T. Y. Role of Niemann–Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol. J. Biol. Chem. 275, 4013–4021 (2000).This work describes for the first time that LDL-derived cholesterol is rapidly transported to the plasma membrane, independently of the function of the NPC1 protein, which was previously thought to regulate such transport.

    Article  CAS  PubMed  Google Scholar 

  18. Lange, Y., Ye, J., Rigney, M. & Steck, T. Cholesterol movement in Niemann–Pick type C cells and in cells treated with amphiphiles. J. Biol. Chem. 275, 17468–17475 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Liscum, L. Pharmacological inhibition of the intracellular transport of low-density lipoprotein-derived cholesterol in Chinese hamster ovary cells. Biochim. Biophys. Acta 1045, 40–48 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Pentchev, P. G. et al. The Niemann–Pick C lesion and its relationship to the intracellular distribution and utilization of LDL cholesterol. Biochim. Biophys. Acta 1225, 235–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V. & Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597–1605 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smart, E. J., Ying, Y.-S., Donzell, W. C. & Anderson, R. G. W. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271, 29427–29435 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Hannan, L. A. & Edidin, M. Traffic, polarity, and detergent solubility of a glycosylphosphatidylinositol-anchored protein after LDL-deprivation of MDCK cells. J. Cell Biol. 133, 1265–1276 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Muller, G. et al. Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Mol. Cell. Biol. 21, 4553–4567 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bist, A., Fielding, P. E. & Fielding, C. J. Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc. Natl Acad. Sci. USA 94, 10693–10698 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garver, W. S. et al. Increased expression of caveolin-1 in heterozygous Niemann–Pick type II human fibroblasts. Biochem. Biophys. Res. Commun. 236, 189–193 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Garver, W. S. et al. Altered expression of caveolin-1 and increased cholesterol in detergent insoluble membrane fractions from liver in mice with Niemann–Pick disease type C. Biochim. Biophys. Acta 1361, 272–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Pol, A. et al. A caveolin dominant-negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol. 152, 1057–1070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K. & Nomura, R. Caveolin-2 is targeted to lipid droplets, a new 'membrane domain' in the cell. J. Cell Biol. 152, 1079–1085 (2001).References 29 and 30 describe the discovery of new membrane domains in cells, and their association with caveolin. Great morphological studies and excellent time-lapse microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).Proposes and demonstrates the existence of lipid rafts within the plasma membrane of mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  32. Borst, P., Zelcer, N. & van Helvoort, A. ABC transporters in lipid transport. Biochim. Biophys. Acta 1486, 128–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Schmitz, G., Kaminski, W. E. & Orso, E. ABC transporters in cellular lipid trafficking. Curr. Opin. Lipidol. 11, 493–501 (2000).References 32 and 33 are excellent reviews on the involvement of ABC transporters in cellular lipid transport.

    Article  CAS  PubMed  Google Scholar 

  34. Dean, M., Hamon, Y. & Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42, 1007–1017 (2001).

    CAS  PubMed  Google Scholar 

  35. Klein, I., Sarkadi, B. & Varadi, A. An inventory of the human ABC proteins. Biochim. Biophys. Acta 1461, 237–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Nelissen, B., De Wachter, R. & Goffeau, A. Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21, 113–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Rogers, B. et al. The pleiotropic drug ABC transporters from Saccharomyces cerevisiae. J. Mol. Microbiol. Biotechnol. 3, 207–214 (2001).

    CAS  PubMed  Google Scholar 

  38. Saier, M. H. Jr et al. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. 12, 265–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Van Bambeke, F., Balzi, E. & Tulkens, P. M. Antibiotic efflux pumps. Biochem. Pharmacol. 60, 457–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Cabrita, M. A., Hobman, T. C., Hogue, D. L., King, K. M. & Cass, C. E. Mouse transporter protein, a membrane protein that regulates cellular multidrug resistance, is localized to lysosomes. Cancer Res. 59, 4890–4897 (1999).

    CAS  PubMed  Google Scholar 

  41. Paulsen, I. T., Brown, M. H. & Skurray, R. A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60, 575–608 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Y. et al. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70, 539–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Kaminski, W. E. et al. Identification of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7). Biochem. Biophys. Res. Commun. 273, 532–538 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Oram, J. F. Tangier disease and ABCA1. Biochim. Biophys. Acta 1529, 321–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genet. 22, 347–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Brooks-Wilson, A. et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genet. 22, 336–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet. 22, 352–355 (1999).References 45–47 describe the molecular defect in Tangier disease, setting in motion an explosion in the field of ABC transporters and their involvement in lipid transport.

    Article  CAS  PubMed  Google Scholar 

  48. Mott, S. et al. Decreased cellular cholesterol efflux is a common cause of familial hypoalphalipoproteinemia: role of the ABCA1 gene mutations. Atherosclerosis 152, 457–468 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Clee, S. M. et al. Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J. Clin. Invest. 106, 1263–1270 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Costet, P., Luo, Y., Wang, N. & Tall, A. R. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J. Biol. Chem. 275, 28240–28245 (2000).

    CAS  PubMed  Google Scholar 

  51. Berge, K. E. et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290, 1771–1775 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, N., Silver, D. L., Costet, P. & Tall, A. R. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J. Biol. Chem. 275, 33053–33058 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Mendez, A. J., Lin, G., Wade, D. P., Lawn, R. M. & Oram, J. F. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J. Biol. Chem. 276, 3158–3166 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, N., Silver, D. L., Thiele, C. & Tall, A. R. ABCA1 functions as a cholesterol efflux regulatory protein. J. Biol. Chem. 276, 23742–23747 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Vanier, M. T. et al. Type C Niemann–Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-drerived cholesterol processing. Biochim. Biophys. Acta 1096, 328–337 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Patterson, M. C. et al. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 3611–3634 (McGraw–Hill, New York, 2001).

    Google Scholar 

  58. Pentchev, P. G. et al. Type C Niemann–Pick disease: a parallel loss of regulatory responses in both the uptake and esterification of low-density lipoprotein-derived cholesterol in cultured fibroblasts. J. Biol. Chem. 261, 16775–16780 (1986).

    CAS  PubMed  Google Scholar 

  59. Carstea, E. D. et al. Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Morris, J. A. et al. The genomic organization and polymorphism analysis of the human Niemann–Pick C1 gene. Biochem. Biophys. Res. Commun. 261, 493–498 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Yamamoto, T. et al. NPC1 gene mutations in Japanese patients with Niemann–Pick disease type C. Hum. Genet. 105, 10–16 (1999).

    CAS  PubMed  Google Scholar 

  62. Millat, G. et al. Niemann–Pick C1 disease: the I1061T substitution is a frequent mutant allele in patients of Western European descent and correlates with a classic juvenile phenotype. Am. J. Hum. Genet. 65, 1321–1329 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Greer, W. L. et al. Mutations in NPC1 highlight a conserved NPC1-specific cysteine-rich domain. Am. J. Hum. Genet. 65, 1252–1260 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greer, W. L. et al. The Nova Scotia (type D) form of NiemannPick disease is caused by a G3097→T transversion in NPC1. Am. J. Hum. Genet. 63, 52–54 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, X. et al. Niemann–Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1. Am. J. Hum. Genet. 68, 1361–1372 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Millat, G. et al. Niemann–Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am. J. Hum. Genet. 68, 1373–1385 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pentchev, P. G. et al. Group C Niemann–Pick disease: faulty regulation of low-density lipoprotein uptake and cholesterol storage in cultured fibroblasts. FASEB J. 1, 40–45 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Liscum, L. & Faust, J. R. Low density lipoprotein (LDL)-mediated suppression of cholesterol synthesis and LDL uptake is defective in Niemann–Pick type C fibroblasts. J. Biol. Chem. 262, 17002–17008 (1987).

    CAS  PubMed  Google Scholar 

  69. Cadigan, K. M., Spillane, D. M. & Chang, T. Y. Isolation and characterization of Chinese hamster ovary cell mutants defective in intracellular low density lipoprotein-cholesterol trafficking. J. Cell Biol. 110, 295–308 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Dahl, N. K., Reed, K. L., Daunais, M. A., Faust, J. R. & Liscum, L. Isolation and characterization of Chinese hamster ovary cells defective in the intracellular metabolism of low density lipoprotein-derived cholesterol. J. Biol. Chem. 267, 4889–4896 (1992).

    CAS  PubMed  Google Scholar 

  71. Davies, J. P., Chen, F. W. & Ioannou, Y. A. Transmembrane molecular pump activity of Niemann–Pick C1 protein. Science 290, 2295–2298 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Marigo, V., Davey, R. A., Zuo, Y., Cunningham, J. M. & Tabin, C. J. Biochemical evidence that patched is the hedgehog receptor. Nature 384, 176–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Stone, D. M. et al. The tumour suppressor gene patched encodes a candidate receptor for sonic hedgehog. Nature 384, 129–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Fietz, M. J. et al. The hedgehog gene family in Drosophila and vertebrate development. Dev. Suppl. 43–51 (1994).

  75. Lee, J. J. et al. Autoproteolysis in hedgehog protein biogenesis. Science 266, 1528–1537 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Hua, X., Nohturfft, A., Goldstein, J. L. & Brown, M. S. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 87, 415–426 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Davies, J. P., Levy, B. & Ioannou, Y. A. Evidence for a Niemann–Pick C (NPC) gene family: identification and characterization of NPC1L1. Genomics 65, 137–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Neufeld, E. B. et al. The Niemann–Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J. Biol. Chem. 274, 9627–9635 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Patel, S. C. et al. Localization of Niemann–Pick C1 protein in astrocytes: implications for neuronal degeneration in Niemann–Pick type C disease. Proc. Natl Acad. Sci. USA 96, 1657–1662 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Higgins, M. E., Davies, J. P., Chen, F. W. & Ioannou, Y. A. Niemann–Pick C1 is a late endosome-resident protein that transiently associates with lysosomes and the trans-Golgi network. Mol. Genet. Metab. 68, 1–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).The first report to establish the late endosome as the cholesterol storage compartment in NPC−/− cells and the role of lysobisphosphatidic acid in regulating cholesterol transport.

    Article  CAS  PubMed  Google Scholar 

  82. Puri, V. et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nature Cell Biol. 1, 386–388 (1999).An excellent paper describing the involvement of cholesterol in the regulation of membrane transport.

    Article  CAS  PubMed  Google Scholar 

  83. Ko, D. C., Gordon, M. D., Jin, J. Y. & Scott, M. P. Dynamic movements of organelles containing Niemann–Pick C1 protein: NPC1 involvement in late endocytic events. Mol. Biol. Cell 12, 601–614 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, M. et al. Cessation of rapid late endosomal tubulovesicular trafficking in Niemann–Pick type C1 disease. Proc. Natl Acad. Sci. USA 98, 4466–4471 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, M. et al. Sterol-modulated glycolipid sorting occurs in Niemann–Pick C1 late endosomes. J. Biol. Chem. 276, 3417–3425 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Millard, E. E., Srivastava, K., Traub, L. M., Schaffer, J. E. & Ory, D. S. Niemann–Pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis. J. Biol. Chem. 275, 38445–38451 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Fukuda, M., Viitala, J., Matteson, J. & Carlsson, S. R. Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. J. Biol. Chem. 262, 18920–18928 (1988).

    Google Scholar 

  88. Tseng, T.-T. et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1, 107–125 (1999).

    CAS  PubMed  Google Scholar 

  89. Kirchhoff, C., Osterhoff, C. & Young, L. Molecular cloning and characterization of HE1, a major secretory protein of the human epididymis. Biol. Reprod. 54, 847–856 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Naureckiene, S. et al. Identification of HE1 as the second gene of Niemann–Pick C disease. Science 290, 2298–2301 (2000).Elucidation of the molecular defect in NPC type 2 disease.

    Article  CAS  PubMed  Google Scholar 

  91. Okamura, N. et al. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim. Biophys. Acta 1438, 377–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Nakamura, H. & Ohtsubo, K. Ultrastructure appearance of atherosclerosis in human and experimentally-induced animal models. Electron Microsc. Rev. 5, 129–170 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Tangirala, R. K. et al. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J. Lipid Res. 35, 93–104 (1994).

    CAS  PubMed  Google Scholar 

  94. Shio, H., Fowler, S., Bhuvaneswaran, C. & Morris, M. D. Lysosome lipid storage disorder in NCTR-BALB/c mice. II. Morphologic and cytochemical studies. Am. J. Pathol. 108, 150–159 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tomasetto, C. et al. Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11–q21.3 region of chromosome 17. Genomics 28, 367–376 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Moog-Lutz, C. et al. MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas. Int. J. Cancer 71, 183–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Watari, H. et al. MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc. Natl Acad. Sci. USA 94, 8462–8467 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tsujishita, Y. & Hurley, J. H. Structure and lipid transport mechanism of a StAR-related domain. Nature Struct. Biol. 7, 408–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Alpy, F. et al. The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J. Biol. Chem. 276, 4261–4269 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Ericsson, J., Jackson, S. M., Lee, B. C. & Edwards, P. A. Sterol regulatory binding element protein binds to cis element in the promoter of the farnesyl diphosphate gene. Proc. Natl Acad. Sci. USA 93, 945–950 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ericsson, J., Usheva, A. & Edwards, P. A. YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. J. Biol. Chem. 274, 14508–14513 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Shrivastava, A. & Calame, K. An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1. Nucleic Acids Res. 22, 5151–5155 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Porter, J. P., Young, K. E. & Beachy, P. A. Cholesterol modification of hedgehog signaling protein in animal development. Science 274, 255–259 (1996).An excellent paper, demonstrating the autoproteolysis and cholesterol modification of Hedghog protein.

    Article  CAS  PubMed  Google Scholar 

  105. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J. E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Hahn, H., Wojnowski, L., Miller, G. & Zimmer, A. The patched signaling pathway in tumorigenesis and development: lessons from animal models. J. Mol. Med. 77, 459–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Reifenberger, J. et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58, 1798–1803 (1998).

    CAS  PubMed  Google Scholar 

  109. Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842–845 (1997).

    CAS  PubMed  Google Scholar 

  110. Martin, V., Carrillo, G., Torroja, C. & Guerrero, I. The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Curr. Biol. 11, 601–607 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Strutt, H. et al. Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation. Curr. Biol. 11, 608–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Groener, J. E., Bax, W. & Poorthuis, B. J. Metabolic fate of oleic acid derived from lysosomal degradation of cholesteryl oleate in human fibroblasts. J. Lipid Res. 37, 2271–2279 (1996).

    CAS  PubMed  Google Scholar 

  113. Berk, P. D. & Stump, D. D. Mechanisms of cellular uptake of long chain free fatty acids. Mol. Cell Biochem. 192, 17–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Dutta-Roy, A. K. Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding/transport proteins. Cell. Mol. Life Sci. 57, 1360–1372 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Kennedy, M. W. & Beauchamp, J. Sticky-finger interaction sites on cytosolic lipid-binding proteins? Cell. Mol. Life Sci. 57, 1379–1387 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Stewart, J. M. The cytoplasmic fatty-acid-binding proteins: thirty years and counting. Cell. Mol. Life Sci. 57, 1345–1359 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Ou, J. et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc. Natl Acad. Sci. USA 98, 6027–6032 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xu, J., Teran-Garcia, M., Park, J. H., Nakamura, M. T. & Clarke, S. D. Polyunsaturated fatty acids suppress hepatic sterol regulatory element- binding protein-1 expression by accelerating transcript decay. J. Biol. Chem. 276, 9800–9807 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Hannah, V. C., Ou, J., Luong, A., Goldstein, J. L. & Brown, M. S. Unsaturated fatty acids down-regulate SREPB isoforms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol. Chem. 276, 4365–4372 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Pai, J. T., Guryev, O., Brown, M. S. & Goldstein, J. L. Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J. Biol. Chem. 273, 26138–26148 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Schoer, J. K. et al. Lysosomal membrane cholesterol dynamics. Biochemistry 39, 7662–7677 (2000).A great study that demonstrates the requirement of processes extrinsic to the lysosomal membrane for efficient cholesterol exit from this compartment.

    Article  CAS  PubMed  Google Scholar 

  122. Zervas, M., Dobrenis, K. & Walkley, S. U. Neurons in Niemann–Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J. Neuropathol. Exp. Neurol. 60, 49–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Harzer, K. & Kustermann-Kuhn, B. Quantified increases of cholesterol, total lipid and globotriaosylceramide in filipin-positive Niemann–Pick type C fibroblasts. Clin. Chim. Acta 305, 65–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Yamazaki, T., Chang, T. Y., Haass, C. & Ihara, Y. Accumulation and aggregation of amyloid beta-protein in late endosomes of Niemann–Pick type C cells. J. Biol. Chem. 276, 4454–4460 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Simons, K. & Gruenberg, J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol. 10, 459–462 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize for the omission of many outstanding papers that could not be cited or discussed owing to space limitations.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

LDLR

HMGCR

LRP1

APOE

ACAT

APOB

NPC1

NPC

CAV1

CAV2

CAV3

SR-B1

Tangier disease

inventory of ABC proteins

ABC1

TAP

CFTR

GCN20

White

VMAT1

VMAT2

ABCA7

APOA1

ABCA1

LXR

RXR

ABCG5

ABCG8

sitosterolaemia

PTC

SHH

Niemann–Pick C1-like 1

HE1

NPC2

MLN64

STAR

Indian hedgehog

Desert hedgehog

FURTHER INFORMATION

Ioannou lab

Glossary

LOW-DENSITY LIPOPROTEIN RECEPTOR

(LDLR). A plasma-membrane receptor found on most mammalian cells. Responsible for the salvaging of cholesterol from circulation through the endocytosis of LDL particles.

LIPOPROTEINS

Particles such as LDL and HDL, found in the blood circulation, which carry lipids from the liver to peripheral tissues and back. These particles have a hydrophobic core containing triglycerides and cholesterol esters surrounded by a phospholipid and protein coat, composed of different apolipoproteins.

CLATHRIN-COATED VESICLE

Vesicles that bud off the plasma membrane or the trans-Golgi network. They have a characteristic protein coat, made up of clathrin triskelions.

GLYCOSYLPHOSPHATIDYL-INOSITOL (GPI)-ANCHORED PROTEINS

Proteins found predominantly at the plasma membrane, attached to the lipid bilayer through a hydrophobic anchor, consisting of the two-fatty-acid-chain lipid, glycosylphosphatidylinositol.

STEROL REGULATORY ELEMENT

A consensus sequence found in the promoter regions of several genes. The element is recognized by specific transcription factors that stimulate transcription when cellular sterol or fatty acid levels are low.

HIGH-DENSITY LIPOPROTEIN PARTICLES

(HDLs). Differ from LDLs in the composition of their hydrophobic core and the apolipoprotein composition of their coat.

ABC-TYPE TRANSPORTER

A type of transport protein that contains a consensus sequence known as the ATP-binding cassette.

WALKER A AND WALKER B MOTIFS

Protein motifs that form the nucleotide-binding site of an ABC domain. Walker A has the consensus GE-VALVGPSGSGKSTLL and Walker B the consensus ILLLDEPTSALD. (bold amino acids are invariant.)

PERMEASE

A membrane transporter, also known as a carrier protein or a transporter.

ANTIPORTS, SYMPORTS AND UNIPORTS

Uniports transport their substrate across a membrane. Coupled transporters couple the transport of their substrate to the transfer of a second solute, either in the same direction (symports) or in the opposite direction (antiports).

PROTON-MOTIVE FORCE

(PMF). The force generated across a membrane by the unidirectional transport of protons across a membrane. Both the membrane potential Δψ and the pH gradient ΔpH can contribute to this force.

APOLIPOPROTEIN A-1 (APOA1)

One of the apolipoproteins found predominantly in the coat of HDL particles.

LIPIDOSIS

Storage of various lipids in the lysosomal system is the common phenotype for this group of lysosomal storage diseases.

HEPATOSPLENOMEGALY

An enlargement of the liver and spleen seen in several lysosomal storage diseases.

LAMP-POSITIVE ORGANELLES

Organelles that contain the lysosome-associated membrane protein. Labels lysosomes.

RAB7-POSITIVE

Organelles that contain Rab7, a small GTPase found predominantly in late endosomes.

BODIPY

Trade name for a family of fluorophores that span the visible spectrum, and are used to label proteins, nucleotides, lipids and other molecules.

PERINUCLEAR VESICLES

Vesicular structures that are seen surrounding the nucleus. Usually indicative of lysosomes.

MANNOSE 6-PHOSPHATE MODIFICATION

A phosphate modification of the carbohydrate moieties of proteins destined for the endosomal–lysosomal system. This modification is recognized by the mannose 6-phosphate receptor in the trans-Golgi network, which captures these proteins and transports them to late endosomes.

YIN–YANG-1-BINDING SITE

A consensus sequence found in the promoter region of several genes. In the context of a sterol regulatory element, it acts as a negative regulator of transcription.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioannou, Y. Multidrug permeases and subcellular cholesterol transport. Nat Rev Mol Cell Biol 2, 657–668 (2001). https://doi.org/10.1038/35089558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35089558

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing