Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer gene therapy: fringe or cutting edge?

Key Points

  • Gene therapy is a rational approach to the direct attack of cancer cells based on their molecular defects, but despite encouraging preclinical results and signs of efficacy in early stages of clinical testing, its clinical utility has not been proved.

  • There are three broad approaches to direct cancer gene therapy: expressing tumour-suppressor genes in tumours that lack them (or blocking the expression of activated oncogenes), suicide gene therapy, and selectively replicating viruses.

  • Expression of tumour-suppressor genes in tumour cells causes cell-cycle arrest and/or apoptosis, even though such cells harbour many other genetic changes. Surprisingly, there is also some evidence, at least for expression of TP53, that these effects are not cell autonomous. Clinical trials have revealed that this approach is safe, and there are some signs of efficacy.

  • Blocking the expression of oncogenes, using ribozymes or antisense oligonucleotides, can cause growth arrest or apoptosis in vitro, but its effects are cell autonomous. Pharmacological inhibition of oncoproteins, using small molecules or antibodies, might ultimately prove to be a more viable approach.

  • Suicide gene therapy relies on the expression of an enzyme that converts a harmless prodrug into a potent toxin. Its main advantage is that the toxin can then kill surrounding cells that aren't expressing the vector. Again, suicide gene therapy has proved safe in the clinic but has shown little, if any, therapeutic benefit. Second-generation vectors might address this lack of efficacy.

  • Selectively replicating viruses rely on a property of the tumour cell (such as loss of tumour-suppressor function) that make tumour cells uniquely susceptible to productive infection with the virus. Clinical trials have revealed that the approach is safe, and there are some signs of efficacy.

  • In all these approaches, lack of bioavailability and attack of the viral vectors by the B-cell arm of the immune system are significant problems. Several approaches are being developed to solve these problems, but none have yet been tested in the clinic.

Abstract

Direct targeting of cancer cells with gene therapy has the potential to treat cancer on the basis of its molecular characteristics. But although laboratory results have been extremely encouraging, many practical obstacles need to be overcome before gene therapy can fulfil its goals in the clinic. These issues are not trivial, but seem less formidable than the challenge of killing cancers selectively and rationally — a challenge that has been successfully addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cancer gene therapy and immunotherapy trials currently listed as open by the US Recombinant Advisory Committee.
Figure 2: Cancer gene therapy by delivery of tumour-suppressor genes or inhibition of oncogene expression.
Figure 3: Suicide gene delivery.
Figure 4: Conditionally replicating viruses.
Figure 5: Alterations in the p53 pathway in adenovirus-infected cells and tumours.

Similar content being viewed by others

References

  1. Morin, P. J., Vogelstein, B. & Kinzler, K. W. Apoptosis and APC in colorectal tumorigenesis. Proc. Natl Acad. Sci. USA 93, 7950–7954 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nikitin, A. Y., Juarez-Perez, M. I., Li, S., Huang, L. & Lee, W. H. RB-mediated suppression of spontaneous multiple neuroendocrine neoplasia and lung metastases in Rb+/− mice. Proc. Natl Acad. Sci. USA 96, 3916–3921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demers, G. W. et al. A recombinant adenoviral vector expressing full-length human retinoblastoma susceptibility gene inhibits human tumor cell growth. Cancer Gene Ther. 5, 207–214 (1998).

    CAS  PubMed  Google Scholar 

  4. Craig, C. et al. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells. Oncogene 16, 265–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Sumitomo, K., Shimizu, E., Shinohara, A., Yokota, J. & Sone, S. Activation of RB tumor suppressor protein and growth suppression of small cell lung carcinoma cells by reintroduction of p16INK4A gene. Int. J. Oncol. 14, 1075–1080 (1999).

    CAS  PubMed  Google Scholar 

  6. Tanaka, M. et al. MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene 19, 5406–5412 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Minaguchi, T. et al. Growth suppression of human ovarian cancer cells by adenovirus-mediated transfer of the PTEN gene. Cancer Res. 59, 6063–6067 (1999).

    CAS  PubMed  Google Scholar 

  8. Sakurada, A. et al. Adenovirus-mediated delivery of the PTEN gene inhibits cell growth by induction of apoptosis in endometrial cancer. Int. J. Oncol. 15, 1069–1074 (1999).

    CAS  PubMed  Google Scholar 

  9. Cheney, I. W. et al. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer. Cancer Res. 58, 2331–2334 (1998).

    CAS  PubMed  Google Scholar 

  10. Yang, C. T. et al. Adenovirus-mediated p14ARF gene transfer in human mesothelioma cells. J. Natl Cancer Inst. 92, 636–641 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Roth, J. A. et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med. 2, 985–991 (1996).First report of p53 delivery to cancer cells in humans. Expression of p53 and increased apoptosis in treated tumours was reported, with no evidence of toxicity. The retrovirus delivery system was not sufficiently efficient, but this paper proved the principle that delivery of p53 could kill cancer cells in vivo.

    Article  CAS  PubMed  Google Scholar 

  12. Seth, P. et al. A recombinant adenovirus expressing wild type p53 induces apoptosis in drug-resistant human breast cancer cells: a gene therapy approach for drug-resistant cancers. Cancer Gene Ther. 4, 383–390 (1997).

    CAS  PubMed  Google Scholar 

  13. Holt, J. T. et al. Growth retardation and tumour inhibition by BRCA1. Nature Genet. 12, 298–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Shao, N., Chai, Y. L., Shyam, E., Reddy, P. & Rao, V. N. Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene 13, 1–7 (1996).

    CAS  PubMed  Google Scholar 

  15. Tait, D. L. et al. A phase I trial of retroviral BRCA1sv gene therapy in ovarian cancer. Clin. Cancer Res. 3, 1959–1968 (1997).

    CAS  PubMed  Google Scholar 

  16. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Kaplan, K. B. et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nature Cell Biol. 3, 429–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol. 3, 433–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, W. W. et al. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther. 1, 5–13 (1994).

    PubMed  Google Scholar 

  20. Nishizaki, M. et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin. Cancer Res. 5, 1015–102 (1999).

    CAS  PubMed  Google Scholar 

  21. Bouvet, M. et al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res. 58, 2288–2292 (1998).

    CAS  PubMed  Google Scholar 

  22. Dameron, K. M., Volpert, O. V., Tainsky, M. A. & Bouck, N. The p53 tumor suppressor gene inhibits angiogenesis by stimulating the production of thrombospondin. Cold Spring Harb. Symp. Quant. Biol. 59, 483–489 (1994).First connection between p53 and angiogenesis: the discovery that p53 regulates expression of the production of thrombospondin, a protein purified by Bouck and co-workers in an early biological assay for factors that block angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  23. Buckbinder, L. et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377, 646–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Mueller, H. Tumor necrosis factor as an antineoplastic agent: pitfalls and promises. Cell. Mol. Life Sci. 54, 1291–1298 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Swisher, S. G. et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl Cancer Inst. 91, 763–771 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Clayman, G. L., Frank, D. K., Bruso, P. A. & Goepfert, H. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin. Cancer Res. 5, 1715–1722 (1999).

    CAS  PubMed  Google Scholar 

  27. Nemunaitis, J. et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J. Clin. Oncol. 18, 609–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Barrington, R. E. et al. A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol. Cell Biol. 18, 85–92 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).One of a series of landmark papers from Druker and colleagues, showing the clinical effects of STI-571 (Gleevec) in clinical trials. First successful demonstration that small molecules that target oncogenes can have clinical benefit.

    Article  CAS  PubMed  Google Scholar 

  31. Sebolt-Leopold, J. S. et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Med. 5, 810–816 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Mendelsohn, J. & Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene 19, 6550–6565 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Moolten, F. L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 46, 5276–5281 (1986).Early description of the concept of suicide gene therapy, in which HSV-tk is expressed in cells using viral vectors, and cells and their uninfected neighbours are killed by the approved clinical prodrug, ganciclovir. This system has been the most widely used of all suicide gene-therapy protocols.

    CAS  PubMed  Google Scholar 

  34. Crystal, R. G. et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum. Gene Ther. 8, 985–1001 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Takayama, K. et al. Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ. Cancer Res. 60, 2169–2177 (2000).

    CAS  PubMed  Google Scholar 

  36. Chen, Q. R., Kumar, D., Stass, S. A. & Mixson, A. J. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res. 59, 3308–3312 (1999).

    CAS  PubMed  Google Scholar 

  37. Chen, C. T. et al. Antiangiogenic gene therapy for cancer via systemic administration of adenoviral vectors expressing secretable endostatin. Hum. Gene Ther. 11, 1983–1996 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Regulier, E. et al. Adenovirus-mediated delivery of antiangiogenic genes as an antitumor approach. Cancer Gene Ther. 8, 45–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Brand, K. et al. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinase-2 into the liver tissue. Cancer Res. 60, 5723–5730 (2000).

    CAS  PubMed  Google Scholar 

  40. Rainov, N. G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 11, 2389–2401 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Sandmair, A. M. et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum. Gene Ther. 11, 2197–2205 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Aghi, M., Kramm, C. M., Chou, T. C., Breakefield, X. O. & Chiocca, E. A. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J. Natl Cancer Inst. 90, 370–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Touraine, R. L., Vahanian, N., Ramsey, W. J. & Blaese, R. M. Enhancement of the herpes simplex virus thymidine kinase/ganciclovir bystander effect and its antitumor efficacy in vivo by pharmacologic manipulation of gap junctions. Hum. Gene Ther. 9, 2385–2391 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Sakai, Y. et al. Gene therapy for hepatocellular carcinoma using two recombinant adenovirus vectors with α-fetoprotein promoter and Cre/lox P system. J. Virol. Methods 92, 5–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Kirn, D. H. & McCormick, F. Replicating viruses as selective cancer therapeutics. Mol. Med. Today 2, 519–527 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Mineta, T., Rabkin, S. D., Yazaki, T., Hunter, W. D. & Martuza, R. L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Med. 1, 938–943 (1995).First use of a recombinant conditionally replicating virus to treat human cancer. This HSV mutant cannot replicate in quiescent cells because a key enzyme involved in DNA synthesis has been deleted. This mutant virus kills brain tumour cells selectively, because normal cells cannot support replication.

    Article  CAS  PubMed  Google Scholar 

  47. Markert, J. M. et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 7, 867–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Randazzo, B. P., Bhat, M. G., Kesari, S., Fraser, N. W. & Brown, S. M. Treatment of experimental subcutaneous human melanoma with a replication-restricted herpes simplex virus mutant. J. Invest. Dermatol. 108, 933–937 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. MacKie, R. M., Stewart, B. & Brown, S. M. Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet 357, 525–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Rampling, R. et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 7, 859–866 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Barker, D. D. & Berk, A. J. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156, 107–121 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).First virus described for which replication depends on loss of p53. This adenovirus mutant grows selectively in tumour cells in which p53 is inactive, but also depends on other functions of tumour cells that are not fully understood for its efficient replication. In this paper, it was shown for the first time that a recombinant virus destroys human xenograft tumours in mouse models of cancer.

    Article  CAS  PubMed  Google Scholar 

  53. Dix, B. R., Edwards, S. J. & Braithwaite, A. W. Does the antitumor adenovirus ONYX-015/dl1520 selectively target cells defective in the p53 pathway? J. Virol. 75, 5443–5447 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heise, C. C., Williams, A., Olesch, J. & Kirn, D. H. Efficacy of a replication-competent adenovirus (ONYX-015) following intratumoral injection: intratumoral spread and distribution effects. Cancer Gene Ther. 6, 499–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Goodrum, F. D. & Ornelles, D. A. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol. 72, 9479–9490 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rothmann, T., Hengstermann, A., Whitaker, N. J., Scheffner, M. & zur Hausen, H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J. Virol. 72, 9470–9478 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Turnell, A. S., Grand, R. J. A. & Gallimore, P. H. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J. Virol. 73, 2074–2083 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ries, S. J. et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nature Med. 6, 1128–1133 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Harada, J. N. & Berk, A. J. p53-independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J. Virol. 73, 5333–5344 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nemunaitis, J. et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol. 19, 289–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Khuri, F. R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med. 6, 879–885 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Heise, C. et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature Med. 6, 1134–1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Fueyo, J. et al. A mutant oncolytic adenovirus targeting the RB pathway produces anti-glioma effect in vivo. Oncogene 19, 2–12 (2000).A mutant adenovirus that cannot neutralize RB is shown to replicate selectively in cancer cells. This approach is similar to the approach of dl1520, ONYX-015. In this case, a small mutation was made to inactivate E1A's ability to neutralize RB, and other functions of E1A were left intact.

    Article  CAS  PubMed  Google Scholar 

  64. Doronin, K. et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J. Virol. 74, 6147–6155 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Doronin, K. et al. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J. Virol. 75, 3314–3324 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nevins, J. R. Adenovirus E1A-dependent trans-activation of transcription. Semin. Cancer Biol. 1, 59–68 (1990).Description of E2F, the crucial transcription factor activity responsible for entry into S-phase of the cell cycle. This factor is misregulated in almost all cancers, and is also vital for adenovirus replication, through its effects on S-phase and on activation of the E2 region of the viral genome.

    CAS  PubMed  Google Scholar 

  67. Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997).

    CAS  PubMed  Google Scholar 

  68. Yu, D. C. et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 61, 517–525 (2001).

    CAS  PubMed  Google Scholar 

  69. Brunori, M., Malerba, M., Kashiwazaki, H. & Iggo, R. Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J. Virol. 75, 2857–2865 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kurihara, T., Brough, D. E., Kovesdi, I. & Kufe, D. W. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J. Clin. Invest. 106, 763–771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hallenbeck, P. L. Chang, Y.-N. & Chiang, Y. L. Vectors for tissue-specific replication. US Patent 5,998,205 (1999).

  72. Freytag, S. O., Rogulski, K. R., Paielli, D. L., Gilbert, J. D. & Kim, J. H. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum. Gene Ther. 9, 1323–1333 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Wildner, O. et al. Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther. 6, 57–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Aghi, M., Chou, T. C., Suling, K., Breakefield, X. O. & Chiocca, E. A. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res. 59, 3861–3865 (1999).

    CAS  PubMed  Google Scholar 

  75. Raj, K., Ogston, P. & Beard, P. Virus-mediated killing of cells that lack p53 activity. Nature 412, 914–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Kirn, D., Martuza, R. L. & Zwiebel, J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nature Med. 7, 781–787 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Alemany, R., Suzuki, K. & Curiel, D. T. Blood clearance rates of adenovirus type 5 in mice. J. Gen. Virol. 81, 2605–2609 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Bergelson, J. M. et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 72, 415–419 (1998).Identification of the cellular receptor for adenovirus, using an ingenious expression-cloning strategy. Identification of CAR has greatly increased our understanding of adenovirus infectivity and efficiency of vectors using adenoviruses to deliver genes or kill cells through replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Honda, T. et al. The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res. Mol. Brain Res. 77, 19–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Fechner, H. et al. Expression of coxsackie adenovirus receptor and α-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther. 6, 1520–1535 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Okegawa, T. et al. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res. 60, 5031–5036 (2000).

    CAS  PubMed  Google Scholar 

  82. Li, Y. et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 59, 325–330 (1999).

    CAS  PubMed  Google Scholar 

  83. Bewley, M. C., Springer, K., Zhang, Y. B., Freimuth, P. & Flanagan, J. M. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286, 1579–1583 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Hoganson, D. K., Sosnowski, B. A., Pierce, G. F. & Doukas, J. Uptake of adenoviral vectors via fibroblast growth factor receptors involves intracellular pathways that differ from the targeting ligand. Mol. Ther. 3, 105–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Cripe, T. P. et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 61, 2953–2960 (2001).A good example of retargeting adenovirus to infect cells through non-CAR-mediated interactions. These approaches are designed to overcome the fact that many cancer cells downregulate CAR expression, whereas CAR is abundantly expressed in many normal epithelial cells.

    CAS  PubMed  Google Scholar 

  86. Shayakhmetov, D. M., Papayannopoulou, T., Stamatoyannopoulos, G. & Lieber, A. Efficient gene transfer into human CD34+ cells by a retargeted adenovirus vector. J. Virol. 74, 2567–2583 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fisher, K. D. et al. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8, 341–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Ikeda, K. et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nature Med. 5, 881–887 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, Y., Yu, D. C., Charlton, D. & Henderson, D. R. Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: implications and proposals for human therapy. Hum. Gene Ther. 11, 1553–1567 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. McCormick, F. New-age drug meets resistance. Nature 412, 281–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Grim, J. et al. Adenovirus-mediated delivery of p16 to p16-deficient human bladder cancer cells confers chemo-resistance to cisplatin and paclitaxel. Clin. Cancer Res. 3, 2415–2423 (1997).

    CAS  PubMed  Google Scholar 

  92. Patel, S. D. et al. The p53-independent tumoricidal activity of an adenoviral vector encoding a p27–p16 fusion tumor suppressor gene. Mol. Ther. 2, 161–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Riley, D. J., Nikitin, A. Y. & Lee, W. H. Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumors in Rb+/− mice. Nature Med. 2, 1316–1321 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Claudio, P. P. et al. RB2/p130 gene-enhanced expression down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in vivo. Cancer Res. 61, 462–468 (2001).

    CAS  PubMed  Google Scholar 

  95. Kawabe, S. et al. Adenovirus-mediated wild-type p53 gene expression radiosensitizes non-small cell lung cancer cells but not normal lung fibroblasts. Int. J. Radiat. Biol. 77, 185–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Nielsen, L. L. et al. Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts. Cancer Gene Ther. 4, 129–138 (1997).

    CAS  PubMed  Google Scholar 

  97. Kataoka, M. et al. An agent that increases tumor suppressor transgene product coupled with systemic transgene delivery inhibits growth of metastatic lung cancer in vivo. Cancer Res. 58, 4761–4765 (1998).

    CAS  PubMed  Google Scholar 

  98. Spitz, F. R. et al. In vivo adenovirus-mediated p53 tumor suppressor gene therapy for colorectal cancer. Anticancer Res. 16, 3415–3422 (1996).

    CAS  PubMed  Google Scholar 

  99. Czubayko, F. et al. Adenovirus-mediated transduction of ribozymes abrogates HER2/neu and pleiotrophin expression and inhibits tumor cell proliferation. Gene Ther. 4, 943–949 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Lui, V. W., He, Y. & Huang, L. Specific down-regulation of HER2/neu mediated by a chimeric U6 hammerhead ribozyme results in growth inhibition of human ovarian carcinoma. Mol. Ther. 3, 169–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Suzuki, T. et al. Adenovirus-mediated ribozyme targeting of HER2/neu inhibits in vivo growth of breast cancer cells. Gene Ther. 7, 241–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Tang, C. K. et al. Ribozyme-mediated down-regulation of ErbB4 in estrogen receptor-positive breast cancer cells inhibits proliferation both in vitro and in vivo. Cancer Res. 59, 5315–5322 (1999).

    CAS  PubMed  Google Scholar 

  103. Alemany, R. et al. Growth inhibitory effect of anti-KRAS adenovirus on lung cancer cells. Cancer Gene Ther. 3, 296–301 (1996).

    CAS  PubMed  Google Scholar 

  104. Tsuchida, T. et al. Adenovirus-mediated anti-KRAS ribozyme induces apoptosis and growth suppression of human pancreatic carcinoma. Cancer Gene Ther. 7, 373–383 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Funato, T., Ishii, T., Kambe, M., Scanlon, K. J. & Sasaki, T. Anti-KRAS ribozyme induces growth inhibition and increased chemosensitivity in human colon cancer cells. Cancer Gene Ther. 7, 495–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Y. A., Nemunaitis, J., Scanlon, K. J. & Tong, A. W. Anti-tumorigenic effect of a KRAS ribozyme against human lung cancer cell line heterotransplants in nude mice. Gene Ther. 7, 2041–2050 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Irie, A. et al. Therapeutic efficacy of an adenovirus-mediated anti-HRAS ribozyme in experimental bladder cancer. Antisense Nucleic Acid Drug Dev. 9, 341–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Kunke, D. et al. Preclinical study on gene therapy of cervical carcinoma using adeno-associated virus vectors. Cancer Gene Ther. 7, 766–777 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Potter, P. M. et al. Construction of adenovirus for high level expression of small RNAs in mammalian cells. Application to a BCL2 ribozyme. Mol. Biotechnol. 15, 105–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Ludwig, A. et al. Ribozyme cleavage of telomerase mRNA sensitizes breast epithelial cells to inhibitors of topoisomerase. Cancer Res. 61, 3053–3061 (2001).

    CAS  PubMed  Google Scholar 

  111. Jiang, W. G. et al. A hammerhead ribozyme suppresses expression of hepatocyte growth factor/scatter factor receptor c-MET and reduces migration and invasiveness of breast cancer cells. Clin. Cancer Res. 7, 2555–2562 (2001).

    CAS  PubMed  Google Scholar 

  112. Cheng, J. et al. Inhibition of cell proliferation in HCC-9204 hepatoma cells by a c-MYC specific ribozyme. Cancer Gene Ther. 7, 407–412 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Trinh, Q. T., Austin, E. A., Murray, D. M., Knick, V. C. & Huber, B. E. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res. 55, 4808–4812 (1995).

    CAS  PubMed  Google Scholar 

  114. Hanna, N. N. et al. Virally directed cytosine deaminase/5-fluorocytosine gene therapy enhances radiation response in human cancer xenografts. Cancer Res. 57, 4205–4209 (1997).

    CAS  PubMed  Google Scholar 

  115. Bridgewater, J. A. et al. Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur. J. Cancer 31A, 2362–2370 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Danks, M. K. et al. Overexpression of a rabbit liver carboxylesterase sensitizes human tumour cells to CPT-11. Cancer Res, 58, 20–22 (1998).

    CAS  Google Scholar 

  117. Waxman, D. J. et al. Cytochrome P450-based cancer gene therapy: recent advances and future prospects. Drug Metab. Rev. 31, 503–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Sorcher, E. J. et al. Tumor cell bystander killing in colonic carcinoma utilizing the Escherichia coli DeoD gene to generate toxic purines. Gene Ther. 4, 233–238 (1994).

    Google Scholar 

  119. Topf, N., Worgall, S., Hackett, N. R. & Crystal, R. G. Regional 'pro-drug' gene therapy: intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma. Gene Ther. 5, 507–513 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Gnant, M. F., Puhlmann, M., Alexander, H. R., Jr & Bartlett, D. L. Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res. 59, 3396–3403 (1999).

    CAS  PubMed  Google Scholar 

  121. Block, A. et al. Gene therapy of metastatic colon carcinoma: regression of multiple hepatic metastases by adenoviral expression of bacterial cytosine deaminase. Cancer Gene Ther. 7, 438–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Pandha, H. S. et al. Genetic prodrug activation therapy for breast cancer: a phase I clinical trial of ERBB2-directed suicide gene expression. J. Clin. Oncol. 17, 2180–2189 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Suzuki, S., Tadakuma, T., Asano, T. & Hayakawa, M. Coexpression of the partial androgen receptor enhances the efficacy of prostate-specific antigen promoter-driven suicide gene therapy for prostate cancer cells at low testosterone concentrations. Cancer Res. 61, 1276–1279 (2001).

    CAS  PubMed  Google Scholar 

  124. Miyauchi, M. et al. Expression of herpes simplex virus-thymidine kinase gene controlled by a promoter region of the midkine gene confers selective cytotoxicity to ganciclovir in human carcinoma cells. Int. J. Cancer 91, 723–727 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Ido, A. et al. Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human α-fetoprotein promoter. Cancer Res. 61, 3016–3021 (2001).

    CAS  PubMed  Google Scholar 

  126. Morimoto, E., Inase, N., Mlyake, S. & Yoshizawa, Y. Adenovirus-mediated suicide gene transfer to small cell lung carcinoma using a tumor-specific promoter. Anticancer Res. 21, 329–331 (2001).

    CAS  PubMed  Google Scholar 

  127. You, L., Yang, C. T. & Jablons, D. M. ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res. 60, 1009–1013 (2000).

    CAS  PubMed  Google Scholar 

  128. Xie, X. et al. Robust prostate-specific expression for targeted gene therapy based on the human kallikrein 2 promoter. Hum. Gene Ther. 12, 549–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Koeneman, K. S. et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J. Urol. 18, 102–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, R. H. & McCormick, F. Selective targeting to the hyperactive β-catenin/T-cell factor pathway in colon cancer cells. Cancer Res. 61, 4445–4449 (2001).

    CAS  PubMed  Google Scholar 

  131. Hernandez-Alcoceba, R., Pihalja, M., Wicha, M. S. & Clarke, M. F. A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum. Gene Ther. 11, 2009–2024 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Majumdar, A. S. et al. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther. 8, 568–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, R., Straus, F. H. & DeGroot, L. J. Adenoviral-mediated gene therapy for thyroid carcinoma using thymidine kinase controlled by thyroglobulin promoter demonstrates high specificity and low toxicity. Thyroid 11, 115–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Nishino, K. et al. Adenovirus-mediated gene therapy specific for small cell lung cancer cells using a Myc–Max binding motif. Int. J. Cancer 91, 851–856 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Ueda, K. et al. Enhanced selective gene expression by adenovirus vector using Cre/loxP regulation system for human carcinoembryonic antigen-producing carcinoma. Oncology 59, 255–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Lan, K. H. et al. Tumor-specific gene expression in carcinoembryonic antigen-producing gastric cancer cells using adenovirus vectors. Gastroenterology 111, 1241–1251 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Siders, W. M., Halloran, P. J. & Fenton, R. G. Transcriptional targeting of recombinant adenoviruses to human and murine melanoma cells. Cancer Res. 56, 5638–5646 (1996).

    CAS  PubMed  Google Scholar 

  138. Chen, J. et al. A glial-specific, repressible, adenovirus vector for brain tumor gene therapy. Cancer Res. 58, 3504–3507 (1998).

    CAS  PubMed  Google Scholar 

  139. Walton, T. et al. Endothelium-specific expression of an E-selectin promoter recombinant adenoviral vector. Anticancer Res. 18, 1357–1360 (1998).

    CAS  PubMed  Google Scholar 

  140. Manome, Y. et al. Transgene expression in malignant glioma using a replication-defective adenoviral vector containing the Egr-1 promoter: activation by ionizing radiation or uptake of radioactive iododeoxyuridine. Hum. Gene Ther. 9, 1409–1417 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Gotoh, A. et al. Development of prostate-specific antigen promoter-based gene therapy for androgen-independent human prostate cancer. J. Urol. 160, 220–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. McKie, E. A., Graham, D. I. & Brown, S. M. Selective astrocytic transgene expression in vitro and in vivo from the GFAP promoter in a HSV RL1 null mutant vector—potential glioblastoma targeting. Gene Ther. 5, 440–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Parr, M. J. et al. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nature Med. 3, 1145–1149 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Miyao, Y. et al. Usefulness of a mouse myelin basic protein promoter for gene therapy of malignant glioma: myelin basic protein promoter is strongly active in human malignant glioma cells. Jpn J. Cancer Res. 88, 678–686 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ozaki, K. et al. Use of von Willebrand factor promoter to transduce suicidal gene to human endothelial cells, HUVEC. Hum. Gene Ther. 7, 1483–1490 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Anderson, L. M., Krotz, S., Weitzman, S. A. & Thimmapaya, B. Breast cancer-specific expression of the Candida albicans cytosine deaminase gene using a transcriptional targeting approach. Cancer Gene Ther. 7, 845–852 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

CancerNet:

brain tumour

breast cancer

cervical cancer

chronic myelogenous leukaemias

colorectal cancers

metastatic melanoma

non-small-cell lung tumours

ovarian cancer

squamous cell carcinoma of the head and neck

 Genbank:

adenovirus

HSV-tk

ICP34.5

ribonucleotide reductase

SV40 large T-antigen

 LocusLink:

ABL

APC

BCR

BRCA1

BRCA2

CAR

β-catenin

cyclin D1

cytochrome P450

E2F

EGFR

endostatin

ERBB2

fibroblast growth-factor receptor

HRAS

IGF-1

IGF1BP

INK4A

matrilysin

MDM2

MUC1

c-MYC

p300

probasin

PSA

PTEN

RB

TCF-4

thrombospondin

TIMP-2

TP53

tumour necrosis factor

VEGF

 Medscape DrugInfo:

cisplatin

cyclophosphamide

5-fluorouracil

ganciclovir

Gleevec

Herceptin

lovastatin

Rituxan

 Patent database:

Novartis US Patent 5,998,205

 Protein Data Bank:

structure of CAR

Glossary

THERAPEUTIC WINDOW

The concentration range over which a drug has a therapeutic effect without having unacceptable toxicity.

RETROVIRAL VECTOR

Gene-therapy vector derived from a retrovirus. The gag, pol and env genes, necessary for replication of the virus, are replaced with a therapeutic gene, preventing viral replication.

ADENOVIRAL VECTOR

Gene-therapy vector derived from an adenovirus. Genes necessary for replication of the virus can be deleted to make replication-defective vectors.

ANTISENSE OLIGONUCLEOTIDE

An oligonucleotide that is complementary to a portion of an mRNA. It binds to the mRNA and arrests translation by physical blockade of ribosomal machinery and/or by activation of endogenous RNases.

RIBOZYMES

RNA molecules with catalytic activity. They can be engineered to cleave specific mRNAs, thereby blocking gene expression at the mRNA level.

PRODUCER CELLS

Cells used to produce replication-defective viral vectors; they are transfected with the genes that are missing from the vector itself, and so provide the products of these genes in trans.

GAP JUNCTION

A junction between two cells that allows the passage of molecules (up to 9 kDa).

EARLY REGION PROTEIN

Viral proteins expressed before the onset of viral DNA synthesis, usually involved in driving the infected cell into the S-phase of the cell cycle.

E3 UBIQUITIN LIGASE

The third enzyme in a series — the first two are designated E1 and E2 — that are responsible for ubiquitylation of target proteins. E3 enzymes provide platforms for binding E2 enzymes and specific substrates, thereby coordinating ubiquitylation of the selected substrates.

MUC1

A large, transmembrane glycoprotein of the mucin family. It is often expressed on cancer cells, especially breast cancer cells.

HUMANIZED MONOCLONAL ANTIBODY

An antibody, usually from a rodent, engineered to contain mainly human sequences. This process reduces the immune response to the antibody in humans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, F. Cancer gene therapy: fringe or cutting edge?. Nat Rev Cancer 1, 130–141 (2001). https://doi.org/10.1038/35101008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35101008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing