Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Stem cells in tissue engineering

Abstract

The concept of producing 'spare parts' of the body for replacement of damaged or lost organs lies at the core of the varied biotechnological practices referred to generally as tissue engineering. Use of postnatal stem cells has the potential to significantly alter the perspective of tissue engineering. Successful long-term restoration of continuously self-renewing tissues such as skin, for example, depends on the use of extensively self-renewing stem cells. The identification and isolation of stem cells from a number of tissues provides appropriate targets for prospective gene therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regeneration of two-dimensional (skin) and three-dimensional (bone) tissues using stem cells.
Figure 2: Bone regeneration by marrow-derived skeletal stem cells (SSCs).

Similar content being viewed by others

References

  1. Stock, U. A. & Vacanti, J. P. Tissue engineering: current state and prospects. Annu. Rev. Med. 52, 443–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lagasse, E., Shizuru, J. A., Uchida, N., Tsukamoto, A. & Weissman, I. L. Toward regenerative medicine. Immunity 14, 425–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pellegrini, G. et al. p63 identifies keratinocyte stem cells. Proc. Natl Acad. Sci. USA 98, 3156–3161 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruszczak, Z. & Schwartz, R. A. Modern aspects of wound healing: an update. Dermatol. Surg. 26, 219–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Pellegrini, G. et al. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68, 868–879 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Pellegrini, G. et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349, 990–993 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Tsai, R. J., Li, L. M. & Chen, J. K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 343, 86–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Friedenstein, A. J., Piatetzky, S. II & Petrakova, K. V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 16, 381–390 (1966).

    CAS  PubMed  Google Scholar 

  10. Bianco, P. & Gehron Robey, P. Marrow stromal stem cells. J. Clin. Invest. 105, 1663–1668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bianco, P., Riminucci, M., Gronthos, S. & Robey, P. G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Langstaff, S. et al. Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization. Biomaterials 20, 1727–1741. (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Bruder, S. P., Kraus, K. H., Goldberg, V. M. & Kadiyala, S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Joint Surg. Am. 80, 985–996 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Krebsbach, P. H., Mankani, M. H., Satomura, K., Kuznetsov, S. A. & Robey, P. G. Repair of craniotomy defects using bone marrow stromal cells. Transplantation 66, 1272–1278 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Petite, H. et al. Tissue-engineered bone regeneration. Nature Biotechnol. 18, 959–963 (2000).

    Article  CAS  Google Scholar 

  17. Kon, E. et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49, 328–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Quarto, R. et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344, 385–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Mankani, M. H. et al. Pedicled bone flap formation using transplanted bone marrow stromal cells. Arch. Surg. 136, 263–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hou, Z. et al. Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. Proc. Natl Acad. Sci. USA 96, 7294–7299 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horwitz, E. M. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Med. 5, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Liechty, K. W. et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Med. 6, 1282–1286 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Kocher, A. A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med. 7, 430–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wakitani, S., Saito, T. & Caplan, A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18, 1417–1426 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    ADS  CAS  PubMed  Google Scholar 

  28. Makino, S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson, K. A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C. & Prockop, D. J. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc. Natl Acad. Sci. USA 95, 3908–3913 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Kuznetsov, S. A. et al. Circulating skeletal stem cells. J. Cell Biol. 153, 1133–1140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonadio, J. Tissue engineering via local gene delivery: update and future prospects for enhancing the technology. Adv. Drug Deliv. Rev. 44, 185–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Asahara, T., Kalka, C. & Isner, J. M. Stem cell therapy and gene transfer for regeneration. Gene Ther. 7, 451–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Dellambra, E. et al. Toward epidermal stem cell-mediated ex vivo gene therapy of Junctional Epidermolysis Bullosa. Hum. Gene Ther. 11, 2283–2287 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Lanzov, V. A. Gene targeting for gene therapy: prospects. Mol. Genet. Metab. 68, 276–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Li, J. & Baker, M. D. Mechanisms involved in targeted gene replacement in mammalian cells. Genetics 156, 809–821 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jen, K. Y. & Gewirtz, A. M. Suppression of gene expression by targeted disruption of messenger RNA: available options and current strategies. Stem Cells 18, 307–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Johnstone, B. & Yoo, J. U. Autologous mesenchymal progenitor cells in articular cartilage repair. Clin. Orthop. S156–S162 (1999).

  40. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl Acad. Sci. USA 97, 13625–13630 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramiya, V. K. et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nature Med. 6, 278–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bjorklund, A. Cell replacement strategies for neurodegenerative disorders. Novartis Found. Symp. 231, 7–15 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of Telethon Fondazione Onlus Grant (to P.B.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianco, P., Robey, P. Stem cells in tissue engineering. Nature 414, 118–121 (2001). https://doi.org/10.1038/35102181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102181

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing