Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Smart single-chip gas sensor microsystem

Abstract

Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis1,2,3. Simultaneous use of various transduction platforms has been demonstrated4,5,6, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors7,8 and sensors based on three-dimensional microelectromechanical systems9,10. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides11 and acoustic-wave-based sensor devices12. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of three different types of transducer.
Figure 2: Diagram of the overall microsystem architecture.
Figure 3: Micrograph of the gas microsensor system chip (size, 7 × 7 mm).
Figure 4: Sensor signals simultaneously recorded from all three polymer-coated (poly(etherurethane), PEUT) transducers.

Similar content being viewed by others

References

  1. Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y. & Kaufman, L. Chemometrics: a Textbook Vol. 2 (Data Handling in Science and Technology, Elsevier, Amsterdam, 1988).

    MATH  Google Scholar 

  2. Brereton, R. G. (ed.) Multivariate Pattern Recognition in Chemometrics Vol. 9 (Data Handling in Science and Technology, Elsevier, Amsterdam, 1992).

    Google Scholar 

  3. Hierlemann, A. et al. in Sensors Update Vol. 2 (eds Baltes, H., Göpel, W. & Hesse, J.) 119–180 (VCH, Weinheim, 1996).

    Google Scholar 

  4. Snow, A. W., Barger, W. R., Klusty, M., Wohltjen, H. & Jarvis, N. L. Simultaneous electrical-conductivity and piezoelectric mass measurements on iodine-doped phthalocyanine Langmuir-Blodgett films. Langmuir 2(4), 513–519 (1986).

    Article  CAS  Google Scholar 

  5. Rodriguez, J. L., Hughes, R. C., Corbett, W. T. & McWhorter, P. J. in Technical Digest IEEE International Electron Devices Meeting 521–524 (IEEE, New York, 1992).

    Google Scholar 

  6. Gumbrecht, W. et al. Integrated pO2, pCO2, pH sensor system for online blood monitoring. Sensors Actuators B 18–19, 704–708 (1994).

    Article  Google Scholar 

  7. Van den Berg, A., van der Waal, P. D., van der Schoot, B. B. & de Rooij, N. F. Silicon-based chemical sensors and chemical analysis systems. Sensors Materials 6, 23–43 (1994).

    CAS  Google Scholar 

  8. Müller, G., Deimel, P. P., Hellmich, W. & Wagner, C. Sensor fabrication using thin-film-on-silicon approaches. Thin Solid Films 296, 157–163 (1997).

    Article  ADS  Google Scholar 

  9. Kovacs, G. T. A. Micromachined Transducers (WCB McGraw-Hill, Boston, 1998).

    Google Scholar 

  10. Madou, M. Fundamentals of Microfabrication (CRC, Boca Raton, Florida, 1997).

    Google Scholar 

  11. Suehle, J. S., Cavicchi, R. E., Gaitan, M. & Semancik, S. Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing. IEEE Electron Device Lett. 14, 118–120 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Vellekoop, M. J., Lubking, G. W., Sarro, P. M. & Venema, A. Integrated-circuit-compatible design and technology of acoustic-wave-based microsensors. Sens. Actuators A 44, 249–263 (1994).

    Article  CAS  Google Scholar 

  13. Hierlemann, A., Ricco, A. J., Bodenhöfer, K., Dominik, A. & Göpel, W. Conferring selectivity to chemical sensors via polymer side-chain selection: Thermodynamics of vapor sorption by a set of polysiloxanes on thickness-shear mode resonators. Anal. Chem. 72, 3696–3708 (2000).

    Article  CAS  Google Scholar 

  14. Koll, A., Kummer, A., Brand, O. & Baltes, H. Discrimination of volatile organic compounds using CMOS capacitive chemical microsensors with thickness-adjusted polymer coating. Proc. SPIE Smart Struct. Mater. 3673, 308–317 (1999).

    ADS  CAS  Google Scholar 

  15. Steiner, F. P. et al. in Digest 8th Int. Conf. on Solid-state Sensors and Actuators Vol. 2, 814–817 (Foundation for Sensor and Actuator Technology, Stockholm, 1995).

    Google Scholar 

  16. Gimzewski, J. K., Gerber, C., Meyer, E. & Schlittler, R. R. Observation of a chemical reaction using a micromechanical sensor. Chem. Phys. Lett. 217, 589–594 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Stowe, T. D. et al. Attonewton force detection using ultrathin silicon cantilevers. Appl. Phys. Lett. 71, 288–290 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Lange, D. et al. in Proc. IEEE Workshop on Micro Electro Mechanical Systems (MEMS 99) 447–452 (IEEE, Piscataway, 1999).

    Google Scholar 

  19. Chen, G. Y., Thundat, T., Wachter, E. A. & Warmack, R. J. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 77, 3618–3622 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Thundat, T., Chen, G. Y., Warmack, R. J., Allison, D. P. & Wachter, E. A. Vapor detection using resonating microcantilevers. Anal. Chem. 67, 519–521 (1995).

    Article  CAS  Google Scholar 

  21. Lang, H. P. et al. A chemical sensor based on a micromechanical cantilever array for the identification of gases. Appl. Phys. A 66, 61–64 (1998).

    Article  Google Scholar 

  22. Maute, M. et al. Detection of volatile organic compounds with polymer-coated cantilevers. Sensors Actuators B 58, 505–511 (1999).

    Article  CAS  Google Scholar 

  23. Hagleitner, C., Lange, D., Brand, O., Hierlemann, A. & Baltes, H. in Digest of Technical Papers IEEE International Solid State Circuits Conf. San Francisco (ed. Wuorinen, J. H.) Vol. 44, 246 (IEEE, Piscataway, 2001).

    Google Scholar 

  24. Bataillard, P., Steffgen, E., Haemmerli, S., Manz, A. & Widmer, H. M. An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, urea and penicillin. Biosensors Bioelectron. 8, 89–98 (1993).

    Article  CAS  Google Scholar 

  25. Lerchner, J., Seidel, J., Wolf, G. & Weber, E. Calorimetric detection of organic vapors using inclusion reactions with organic coating materials. Sensors Actuators B 32, 71–75 (1996).

    Article  CAS  Google Scholar 

  26. Van Heerwarden, A. W., Sarro, P. M., Gardner, J. W. & Bataillard, P. Liquid and gas micro-calorimeters for (bio)chemical measurements. Sensors Actuators A 43, 24–30 (1994).

    Article  Google Scholar 

  27. Hierlemann, A. et al. Application-specific sensor systems based on CMOS chemical microsensors. Sensors Actuators B 70, 2–11 (2000).

    Article  CAS  Google Scholar 

  28. Koll, A. et al. in Proc. IEEE Workshop on Micro Electro Mechanical Systems (MEMS 99) 547–551 (IEEE, Piscataway, 1999).

    Google Scholar 

  29. Koll, A. et al. A flip-chip-packaged CMOS chemical microsystem for detection of volatile organic compounds. Proc. SPIE Smart Struct. Mater. 3328, 223–232 (1998).

    ADS  CAS  Google Scholar 

  30. Ballantine, D. S. et al. Acoustic Wave Sensors: Theory, Design, and Physico-chemical Applications (Academic, San Diego, 1997).

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of former staff of the Physical Electronics Laboratory at ETH Zurich who were involved in the development of the chemical microsensor. We also thank the prototype manufacturers austriamicrosystems for their services. This work formed part of a cooperative project involving the University of Tübingen (U. Weimar), the University of Bologna (M. Rudan), and ETH Zürich, which is financially supported by the Körber Foundation, Hamburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hierlemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagleitner, C., Hierlemann, A., Lange, D. et al. Smart single-chip gas sensor microsystem. Nature 414, 293–296 (2001). https://doi.org/10.1038/35104535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35104535

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing