Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stabilization of superionic α-Agl at room temperature in a glass matrix

Abstract

SINCE the discovery1 that the high-temperature phase of silver iodide (α-AgI) has an ionic conductivity comparable to that of the best liquid electrolytes, solid electrolytes have attracted wide interest. Possible applications of these materials range from solid-state batteries to electrochromic displays and sensors2. Although α-AgI displays conductivities of more than 10 S cm−1 (ref. 3), owing to the almost liquid-like mobility of Ag+ ions, the crystal transforms below 147 °C to the β-phase with a conductivity of only 10−5 S cm−1 at room temperature. Efforts to achieve good conductivities at lower temperatures have focused on the addition of a second component to AgI to form solid solutions or new compounds such as RbAg4I5 and Ag2HgI4 (refs 4–7). Here we report our success in depressing the αβ transformation temperature so as to stabilize α-AgI itself at room temperature. We use a melt-quenching technique to prepare crystallites of α-AgI frozen into a silver borate glass matrix. The quenched material showed diffraction peaks characteristic of α-AgI and displayed ionic conductivities of about 10−1S cm−1. Further development of these glass/crystal composites may make the high ionic conductivity of α-AgI available for room-temperature solid-state applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tubandt, C. & Lorenz, E. Z. phys. Chem. 24, 513–543 (1914).

    Google Scholar 

  2. van Gool, W. (ed.) Fast Ion Transport in Solids (North-Holland, Amsterdam, 1973).

  3. Funke, K., Prog. Solid State Chem. 11, 345–402 (1976).

    Article  Google Scholar 

  4. Bradley, J. N. & Greene, P. D. Trans. Faraday Soc. 63, 424–430 (1967).

    Article  CAS  Google Scholar 

  5. Suchow, L. & Pond, G. R. J. Am. chem. Soc. 75, 5242–5244 (1953).

    Article  CAS  Google Scholar 

  6. Takahashi, T., Ikeda, S. & Yamamoto, O. J. electrochem. Soc. 120, 647–651 (1973).

    Article  CAS  Google Scholar 

  7. Takahashi, T., Ikeda, S. & Yamamoto, O. J. electrochem. Soc. 119, 477–482 (1972).

    Article  CAS  Google Scholar 

  8. Minami, T., Nambu, Y. & Tanaka, M. J. Am. Ceram. Soc. 60, 467–469 (1977).

    Article  CAS  Google Scholar 

  9. Minami, T., Imazawa, Y. & Tanaka, M. J. non-cryst. Solids 42, 469–476 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Minami, T. J. non-cryst. Solids 95/96, 107–118 (1980).

    Article  ADS  Google Scholar 

  11. Minami, T., Takuma, Y. & Tanaka, M., J. electrochem. Soc., 124, 1659–1662 (1977).

    Article  CAS  Google Scholar 

  12. Wnetrzewski, B., Nowinski, J. L. & Jakubowski, W. Solid State Ionics 36, 209–211 (1989).

    Article  CAS  Google Scholar 

  13. Minami, T., Ikeda, Y. & Tanaka, M. Nippon Kagaku Kaishi, 1617–1623 (1981).

  14. Tatsumisago, M. & Minami, T. Mater. Chem. Phys. 18, 1–17 (1987).

    Article  CAS  Google Scholar 

  15. Sarjeant, P. T. & Roy, R. J. Am. Ceram. Soc. 50, 500–503 (1967).

    Article  CAS  Google Scholar 

  16. Sarjeant, P. T. & Roy, R. Mater. Res. Bull. 3, 265–280 (1968).

    Article  CAS  Google Scholar 

  17. Nakamura, T. & Takashige, M. Kotaibutsuri 15, 497–503 (1980).

    CAS  Google Scholar 

  18. Tatsumisago, M., Machida, N. & Minami, T. J. Ceram. Soc. Japan 95, 59–63 (1987).

    Google Scholar 

  19. Burley, G. Acta Cryst 23, 1–5 (1967).

    Article  CAS  Google Scholar 

  20. Kingery, W. D., Bowen, H. K. & Uhlmann, D. R. Introduction to Ceramics 634–643 (Wiley, New York, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatsumisago, M., Shinkuma, Y. & Minami, T. Stabilization of superionic α-Agl at room temperature in a glass matrix. Nature 354, 217–218 (1991). https://doi.org/10.1038/354217a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354217a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing