Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A human recombinant haemoglobin designed for use as a blood substitute

Abstract

THE need to develop a blood substitute is now urgent because of the increasing concern over blood-transmitted viral and bacterial pathogens1. Cell-free haemoglobin solutions2,3 and human haemoglobin synthesized in Escherichia coli4 and Saccharomyces cerevisiae5 have been investigated as potential oxygen-carrying substitutes for red blood cells. But these haemoglobins cannot be used as a blood substitute because (1) the oxygen affinity in the absence of 2,3-bisphosphoglycerate is too high to allow unloading of enough oxygen in the tissues6, and (2) they dissociate into αβ dimers7 that are cleared rapidly by renal filtration8–10, which can result in long-term kidney damage7–9. We have produced a human haemoglobin using an expression vector containing one gene encoding a mutant β-globin with decreased oxygen affinity and one duplicated, tandemly fused α-globin gene. Fusion of the two α-globin subunits increases the half-life of this haemoglobin molecule in vivo by preventing its dissociation into αβ dimers and therefore also eliminates renal toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pool, R. Science 250, 1654–1656 (1990).

    Article  ADS  Google Scholar 

  2. Moss, G. S., Gould, S. A., Sehgal, H. L., Sehgal, L. R. & Rosen, A. L. Surgery 95, 249–255 (1984).

    CAS  PubMed  Google Scholar 

  3. Mulder, A. G., Amberson, W. R., Steggerda, F. R. & Flexner, J. J. cell. comp. Physiol. 5, 383–397 (1934).

    Article  CAS  Google Scholar 

  4. Hoffman, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 87, 8521–8525 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Wagenbach, M. et al. Biotechnology 9, 57–61 (1991).

    CAS  PubMed  Google Scholar 

  6. Benesch, R. & Benesch, R. E. Biochem. biophys. Res. Commun. 26, 162–167 (1967).

    Article  CAS  Google Scholar 

  7. Ackers, G. K. & Halvorson, H. R. Proc. natn. Acad. Sci. U.S.A. 71, 4312–4316 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Bunn, H. F., Esham, W. & Bull, R. J. J. exp. Med. 129, 909–923 (1969).

    Article  CAS  Google Scholar 

  9. Bunn, H. F. & Jandl, J. J. exp. Med. 129, 925–934 (1969).

    Article  CAS  Google Scholar 

  10. Lee, R., Atsumi, N., Jacobs, E., Austen, W. & Vlahakes, G. J. Surg. Res. 47, 407–411 (1989).

    Article  CAS  Google Scholar 

  11. Fermi, G., Perutz, M., Shaanan, B. & Fourme, R. J. molec. Biol. 175, 159–174 (1984).

    Article  CAS  Google Scholar 

  12. Shaanan, B. J. molec. Biol. 171, 31–59 (1983).

    Article  CAS  Google Scholar 

  13. Nagai, K., Enoki, Y., Tomita, S. & Teshima, T. J. biol. Chem. 257, 1622–1625 (1982).

    CAS  PubMed  Google Scholar 

  14. Better, J., Chang, P., Robinson, R. & Horwitz, R. Science 240, 1041–1043 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Skerra, A. & Pluckthorn, A. Science 240, 1038–1041 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Moo-Penn, W. et al. FEBS Lett. 92, 53–57 (1978).

    Article  CAS  Google Scholar 

  17. Bucci, E., Razynska, A., Urbaitis, B. & Fronticelli, C. J. biol. Chem. 264, 6191–6195 (1989).

    CAS  PubMed  Google Scholar 

  18. Snyder, S. R., Welty, E. V., Walder, R. Y., Williams, L. A. & Walder, J. A. Proc. natn. Acad. Sci. U.S.A. 84, 7280–7284 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Manning, L. R. et al. Proc. natn. Acad. Sci. U.S.A. 88, 3329–3333 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Loeb, W. F. & Quimby, F. W. (eds) The Clinical Chemistry of Laboratory animals 460–495 (Pergamon, New York, 1989).

  21. Biro, G. P., Ning, J., Peterson, L. M. N. & Anderson, P. J. Biomat. Artificial Cells Immob. Technol. 19, 357 (1991).

    Google Scholar 

  22. Perutz, M. F. J. Crystal Growth 2, 54–56 (1968).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Looker, D., Abbott-Brown, D., Cozart, P. et al. A human recombinant haemoglobin designed for use as a blood substitute. Nature 356, 258–260 (1992). https://doi.org/10.1038/356258a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356258a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing