Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent

Abstract

LIPASES belong to a class of esterases whose activity on trigly-cerides is greatly enhanced at lipid–water interfaces1. This phenomenon, called interfacial activation2, has a structural explanation: a hydrophobic lid, which at rest covers the catalytic site, is displaced on substrate or inhibitor binding, and probably interacts with the lipid matrix3–6. Fusarium solani pisi cutinase belongs to a group of homologous enzymes of relative molecular mass 22–25K (ref. 7) capable of degrading cutin, the insoluble lipid-polyester matrix covering the surface of plants7, and hydrolysing triglycerides7,8. Cutinases differ from classical Upases in that they do not exhibit interfacial activation; they are active on soluble as well as on emulsified triglycerides. Cutinases therefore establish a bridge between esterases and lipases. We report here the three-dimensional structure of a recombinant cutinase from F. solani pisi, expressed in Escherichia coli9,10. Cutinase is an α–β protein; the active site is composed of the triad Ser 120, His 188 and Asp 175. Unlike other lipases, the catalytic serine is not buried under surface loops, but is accessible to solvent. This could explain why cutinase does not display interfacial activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sarda L. & Desnuelle, P. Biochem. biophys. Acta 30, 513–521 (1958).

    Article  CAS  Google Scholar 

  2. Verger, R. & de Haas, G. H. A. Rev. Biophys. Bioengng 5, 77–117 (1976).

    Article  CAS  Google Scholar 

  3. Brady, L. et al. Nature 343, 767–770 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Brzozowski, A. M. et al. Nature 351, 491–494 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Winkler, F. K., D'Arcy, A. & Hunziker, W. Nature 343, 771–774 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Schrag, J. D., Li, Y., Wu, S. & Cygler, M. Nature 351, 761–764 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Kolattudkudy, P. E. in Lipases (eds Brorström, B & Brackman, H) 471–504 (Elsevier, Amsterdam, 1984).

    Google Scholar 

  8. Lauwereys, M., de Geus, P., de Meutter, J., Stanssens, P. & Matthyssens, G. in Lipases-Structure, Mechanism and Genetic Engineering, Vol. 16 (eds Alberghina, L. et al.) 243–251 (VCH, Weinheim, 1991).

    Google Scholar 

  9. De Geus, P., Lauwereys, M. & Matthyssens, G. European Patent Application N. PCT 89.400.462.1.

  10. Abergel, C. et al. J. molec. Biol. 215, 215–216 (1990).

    Article  CAS  Google Scholar 

  11. Liao, D.-L. & Remington, S. J. J. biol. Chem. 265, 6528–6531 (1990).

    CAS  PubMed  Google Scholar 

  12. Sussman, J. L. et al. Science 253, 872–879 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Franken, S. M., Robezoom, H. J., Kalk, K. H. & Dijkstra, B. W. EMBO J. 10, 1297–1302 (1991).

    Article  CAS  Google Scholar 

  14. Ettinger, W. F., Thukral, S. K. & Kolattukudy, P. E. Biochemistry 26, 7883–7892 (1987).

    Article  CAS  Google Scholar 

  15. Derewenda, Z. S. & Derewenda, U. Biochem. Cell Biol. (in the press).

  16. Sibanda, B. L., Blundell, T. L. & Thornton, J. M. J. molec. Biol. 206, 759–777 (1989).

    Article  CAS  Google Scholar 

  17. Pullman, B., Maigret, B. & Perahia, D. Theor. Chim. Acta 18, 344–354 (1970).

    Article  Google Scholar 

  18. Scott, D. L. et al. Science 250, 1541–1546 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Blow, D. Nature 351, 444–445 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Kabsch, W. J. appl. Crystallogr. 21, 67–71 (1988).

    Article  CAS  Google Scholar 

  21. Kabsch, W. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  22. Howard, A. J., J. appl. Crystallogr. 20, 383 (1987).

    Article  CAS  Google Scholar 

  23. Roussel, A. & Cambillau, C. in Silicon Graphics Directory 86 (Mountain View, California, 1991).

    Google Scholar 

  24. Brünger, A. T., Karplus, M. & Petsko, G. Acta crystallogr. A45, 50–61 (1989).

    Article  Google Scholar 

  25. Connolly, M. L. Science 306, 287–290 (1983).

    Google Scholar 

  26. Colloc'h, N., & Mornon, J. P. J. molec graphics 5, 170 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, C., De Geus, P., Lauwereys, M. et al. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356, 615–618 (1992). https://doi.org/10.1038/356615a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356615a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing