Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of boreal forest vegetation on global climate

Abstract

TERRESTRIAL ecosystems are thought to play an important role in determining regional and global climate1–6; one example of this is in Amazonia, where destruction of the tropical rainforest leads to warmer and drier conditions4–6. Boreal forest ecosystems may also affect climate. As temperatures rise, the amount of continental and oceanic snow and ice is reduced, so the land and ocean surfaces absorb greater amounts of solar radiation, reinforcing the warming in a 'snow/ice/albedo' feedback which results in large climate sensitivity to radiative forcings7–9. This sensitivity is moderated, however, by the presence of trees in northern latitudes, which mask the high reflectance of snow10,11, leading to warmer winter temperatures than if trees were not present12–14. Here we present results from a global climate model which show that the boreal forest warms both winter and summer air temperatures, relative to simulations in which the forest is replaced with bare ground or tundra vegetation. Our results suggest that future redistributions of boreal forest and tundra vegetation (due, for example, to extensive logging, or the influence of global warming) could initiate important climate feedbacks, which could also extend to lower latitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilson, M. F., Henderson-Sellers, A., Dickinson, R. E. & Kennedy, P. J. J. Climatol. 7, 319–343 (1987).

    Article  Google Scholar 

  2. Sato, N. et al. J. atmos. Sci. 46, 2757–2782 (1989).

    Article  ADS  Google Scholar 

  3. Sud, Y. C. et al. Agric. For. Meteorol. 52, 133–180 (1990).

    Article  ADS  Google Scholar 

  4. Dickinson, R. E. & Henderson-Sellers, A. Q. Jl R. met. Soc. 114, 439–462 (1988).

    Article  ADS  Google Scholar 

  5. Shukla, J., Nobre, C. & Sellers, P. Science 247, 1322–1325 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Nobre, C. A., Sellers, P. J. & Shukla, J. J. Clim. 4, 957–988 (1991).

    Article  ADS  Google Scholar 

  7. Dickinson, R. E., Meehl, G. A. & Washington, W. M. Climatic Change 10, 241–248 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Ingram, W. J., Wilson, C. A. & Mitchell, J. F. B. J. geophys. Res. 94, 8609–8622 (1989).

    Article  ADS  Google Scholar 

  9. Meehl, G. A. & Washington, W. M. Climatic Change 16, 283–306 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Federer, C. A. J. appl. Met. 7, 789–795 (1968).

    Article  Google Scholar 

  11. Robinson, D. A. & Kukla, G. J. Clim. appl. Met. 23, 1626–1634 (1984); 24, 402–411 (1985).

    Article  Google Scholar 

  12. Otterman, J., Chou, M.-D. & Arking, A. J. Clim. appl. Met. 23, 762–767 (1984).

    Article  Google Scholar 

  13. Harvey, L. D. D. Climatic Change 13, 191–224 (1988).

    Article  ADS  Google Scholar 

  14. Thomas, G. & Rowntree, P. R. Q. Jl R. met. Soc. 118, 469–497 (1992).

    Article  ADS  Google Scholar 

  15. Pollard, D. & Thompson, S. L. Description of a Land-Surface-Transfer Model (LSX) as Part of a Global Climate Model, NCAR Tech. Note (Natn, Center Atmos. Res., Boulder Colorado, 1992).

  16. Williamson, D. L., Kiehl, J. T., Ramanathan, V., Dickinson, R. E. & Hack, J. J. Description of NCAR Community Climate Model (CCM1) NCAR Tech. Note. TN-285+STR (Natn. Center Atmos. Res., Boulder Colorado, 1987).

  17. Slingo, A. & Slingo, J. M. J. geophys. Res. 96, 15341–15357 (1991).

    Article  ADS  Google Scholar 

  18. Thompson, S. L., Ramaswamy, V. & Covey, C. J. geophys. Res. 92, 10942–10960 (1987).

    Article  ADS  Google Scholar 

  19. Williamson, D. L. & Rasch, P. J. Mon. Weath. Rev. 117, 102–129 (1989).

    Article  ADS  Google Scholar 

  20. Rasch, P. J. & Williamson, D. L. Q. Jl Met. Soc. 116, 1071–1090 (1990).

    Article  ADS  Google Scholar 

  21. Williamson, D. L. Tellus A42, 413–428 (1990).

    Article  Google Scholar 

  22. Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J. & Wilson, M. F. Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model NCAR Tech. TN-275+STR (Natn. Center Atmos. Res., Boulder Colorado, 1986).

  23. Sellers, P. J., Mintz, Y., Sud, Y. C. & Dalcher, A. J. atmos. Sci. 43, 505–531 (1986).

    Article  ADS  Google Scholar 

  24. Covey, C. & Thompson, S. L. Palaeogeogr Palaeoclimatol Palaeoecol. 75, 331–341 (1989).

    Article  Google Scholar 

  25. Dorman, J. L. & Sellers, P. J. J. appl. Met. 28, 833–855 (1989).

    Article  Google Scholar 

  26. Olson, J. S., Watts, J. A. & Allison, L. J. Carbon in Live Vegetation of Major World Ecosystems, ORNL-5862 (Oak Ridge Natn Lab., Oak Ridge Tennessee, 1983).

    Google Scholar 

  27. Rosencranz, A. & Scott, A. Nature 355, 293–294 (1992).

    Article  ADS  Google Scholar 

  28. Alexander, R. C. & Mobley, R. L., Mon. Weath. Rev. 104, 143–148 (1976).

    Article  ADS  Google Scholar 

  29. Lashof, D. A. Climatic Change 14, 213–242 (1989).

    Article  ADS  CAS  Google Scholar 

  30. D'Arrigo, R., Jacoby, G. C. & Fung, I. Y. Nature 329, 321–323 (1987).

    Article  ADS  Google Scholar 

  31. Bonan, G. B. Tellus B44, 173–185 (1992).

    Article  Google Scholar 

  32. Bonan, G. B. J. geophys. Res. 96, 7301–7312 (1991); 17329–17338 (1991).

    Article  ADS  CAS  Google Scholar 

  33. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. Climate Change: The IPCC Scientific Assessment (Cambridge Univ, Press, Cambridge, 1990).

    Google Scholar 

  34. Post, W. M. Report of a Workshop on Climate Feedbacks and the Role of Peatlands, Tundra, and Boreal Ecosystems in the Global Carbon Cycle, ORNL/TM-11457 (Oak Ridge Natn Lab., Oak Ridge Tennessee, 1990).

  35. Bryson, R. A. Geogr. Bull. 8, 228–269 (1966).

    Google Scholar 

  36. Larsen, J. A. The Boreal Ecosystem (Academic, New York, 1980).

    Google Scholar 

  37. Tuhkanen, S. Acta bot. Fennica 127, 1–50 (1984).

    Google Scholar 

  38. Oechel, W. C. & Lawrence, W. T. in Physiological Ecology of North American Plant Communities (eds Chabot, B. F. & Mooney, H. A.) 66–94 (Chapman & Hall, New York, 1985).

    Book  Google Scholar 

  39. Elliot-Fisk, D. L. in North American Terrestrial Vegetation (eds Barbour, M. G, & Billings, W. D.) 33–62 (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  40. Ritchie, J. C. Postglacial Vegetation of Canada (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  41. Webb, T. III in Vegetation History (eds Huntley, B. & Webb, T. III) 385–414 (Kluwer, Boston, 1988).

    Book  Google Scholar 

  42. Sirois, L. in A Systems Analysis of the Global Boreal Forest (eds Shugart, H. H., Leemans, R. & Bonan, G. B.) 196–215 (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  43. Emanual, W. R., Shugart, H. H. & Stevenson, M. P. Climatic Change 7, 29–43 (1985).

    Article  ADS  Google Scholar 

  44. Pastor, J. & Post, W. M. Nature 334, 55–58 (1988).

    Article  ADS  Google Scholar 

  45. Smith, T. M., Shugart, H. H., Bonan, G. B. & Smith, J. B. Adv. Ecol. Res. 22, 93–116 (1992).

    Article  Google Scholar 

  46. Smith, T. M., Leemans, R. & Shugart, H. H. Climatic Change 21, 367–394 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonan, G., Pollard, D. & Thompson, S. Effects of boreal forest vegetation on global climate. Nature 359, 716–718 (1992). https://doi.org/10.1038/359716a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359716a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing