Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A microscopic model for surface-induced diamond-to-graphite transitions

Abstract

GRAPHITIZATION of diamond at ambient pressure was first observed in the 1920s1,2, but the mechanisms responsible for this transformation and, in particular, those underlying the nucleation and growth of graphite in diamond, remain controversial3–5. In addition to their fundamental interest, these processes have technological relevance—for example, for the growth by chemical vapour deposition6 of diamond-like films, which sometimes include graphitic islands7. Here we report the results of first-principles molecular dynamics simulations of a surface-induced diamond-to-graphite transition, which provide a microscopic model for the early stages of the graphitization process. We find that a well defined diamond/graphite interface forms during the transition; the electronic properties of the atoms at this interface suggest that they are highly chemically active sites. In addition to its relevance to graphite inclusion in diamond films, our model should yield insight into the process of selective etching in vapour-deposited carbon films, and possibly also into diamond nucleation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friedel, G. & Ribaud, G. C.r. hebd. Séanc. Acad. Sci., Paris 178, 1126–1129 (1924).

    CAS  Google Scholar 

  2. Libeau, P. & Picon, M. C.r. hebd. Séanc. Acad. Sci., Paris 179, 1059–1061 (1924).

    Google Scholar 

  3. Nath, N. S. N. Proc. Indian Acad. Sci. A2, 143–152 (1935).

    Article  Google Scholar 

  4. Evans, T. & James, P. F. Proc. R. Soc. Lond. A277, 260–269 (1964).

    ADS  CAS  Google Scholar 

  5. Davies, G. & Evans, T. Proc. R. Soc. Lond. A328, 413–427 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Spear, K. E. & Frenklach, M. Pure appl. Chem. 66, 1773–1782 (1994).

    Article  CAS  Google Scholar 

  7. Zhu, W., Rendall, C. A., Badzian, A. R. & Messier, R. J. Vac. Sci. Technol. A7, 2315–2324 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Grenville-Wells, H. J. Mineralog. Mag. 29, 803–816 (1952).

    ADS  Google Scholar 

  9. Seal, M. Proc. 4th Int. Conf. on Electron Microscopy (ed. Ross, R.) 455–459 (Royal Microscopical Soc., London, 1958).

    Google Scholar 

  10. Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. Nature 184, 1094–1098 (1959).

    Article  ADS  CAS  Google Scholar 

  11. Rodewald, H. J. Helv. chim. Acta 43, 1657–1666 (1960).

    Article  CAS  Google Scholar 

  12. Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H. J. chem. Phys. 35, 383–391 (1961).

    Article  ADS  CAS  Google Scholar 

  13. Car, R. & Parrinello, M. Phys. Rev. Lett. 55, 2471–2474 1985).

    Article  ADS  CAS  Google Scholar 

  14. Iarlori, S., Galli, G., Gygi, F., Parrinello, M. & Tosatti, E. Phys. Rev. Lett. 69, 2947–2950 (1992).

    Article  ADS  CAS  Google Scholar 

  15. De Vita, A. et al. EPFL Superconducting J. 6, 22–27 (1994).

    Google Scholar 

  16. Nosé, S. Molec. Phys. 52, 255–262 (1984).

    Article  ADS  Google Scholar 

  17. Hoover, W. Phys. Rev. A31, 1695–1697 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Li, Z. et al. J. appl. Phys. 73, 711–715 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Lambrecht, W. R. L. et al. Nature 364, 607–609 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Klein, D. J. Chem. Phys. Lett. 217, 261–265 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Balaban, A. T., Klein, D. J. & Folden, C. A. Chem. Phys. Lett. 217, 266–270 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Jungnickel, G. et al. Bull. Am. phys. Soc. 40, 772 (1995).

    Google Scholar 

  23. Jungnickel, G. et al. Mater. Res. Symp. Proc. 383, 349–360 (1995).

    Article  CAS  Google Scholar 

  24. Davidson, B. & Pickett, W. Phys. Rev. B49, 11253–11256 (1994).

    Article  CAS  Google Scholar 

  25. Mehandru, S. P., Anderson, A. B. & Angus, J. C. J. phys. Chem. 96, 10978–10982 (1992).

    Article  CAS  Google Scholar 

  26. Angus, J. C., Will, H. A. & Stanko, W. S. J. appl. Phys. 39, 2915–2922 (1968).

    Article  ADS  CAS  Google Scholar 

  27. Bachelet, G. B., Hamann, D. & Schlüter, M. Phys. Rev. B26, 4199–4228 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Troullier, N. & Martins, J. L. Phys. Rev. B43, 1993–2006 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Fahy, S., Louie, S. & Cohen, M. L. Phys. Rev. B34, 1191–1199 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Weast, R. C. (ed.) CRC Handbook of Chemistry and Physics 75th edn D-58 (CRC, Boca Raton, Florida 1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vita, A., Galli, G., Canning, A. et al. A microscopic model for surface-induced diamond-to-graphite transitions. Nature 379, 523–526 (1996). https://doi.org/10.1038/379523a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379523a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing