Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor

Abstract

ATTEMPTS to detect and characterize chaos in biological systems are of considerable interest, especially in medical science, where successful demonstrations may lead to new diagnostic tools and therapies1. Unfortunately, conventional methods for identifying chaos often yield equivocal results when applied to biological data2–8, which are usually heavily contaminated with noise. For such applications, a new technique1 based on the detection of unstable periodic orbits holds promise. Infinite sets of unstable periodic orbits underlie chaos in dissipative systems4,9; accordingly, the new method searches a time series only for rare events8 characteristic of these unstable orbits10, rather than analysing the structure of the series as a whole. Here we demonstrate the efficacy of the method when applied to the dynamics of the crayfish caudal photoreceptor (subject to stimuli representative of the animal's natural habitat). Our findings confirm the existence of low-dimensional dynamics in the system, and strongly suggest the existence of deterministic chaos. More importantly, these results demonstrate the power of methods based on the detection of unstable periodic orbits for identifying low-dimensional dynamics—and, in particular, chaos—in biological systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schiff, S. J. et al. Nature 370, 615–620 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Ruelle, D. Physics Today 47, 24–30 (1994).

    Article  Google Scholar 

  3. Ruelle, D. Proc. R. Soc. Lond. A 427, 241–251 (1990).

    Article  ADS  Google Scholar 

  4. Cvitanovic, P. Physica D51, 138–156 (1991).

    MathSciNet  Google Scholar 

  5. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. & Farmer, J. D. Physica D58, 77–94 (1992).

    Google Scholar 

  6. Chang, T., Schiff, S. J., Sauer, T., Gossard, J-P. & Burke, R. E. Biophys. J. 67, 671–683 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Scott, D. A. & Schiff, S. J. Biophys. J. 69, 1748–1757 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Kaplan, D. Physica D73, 38–48 (1994).

    MathSciNet  Google Scholar 

  9. Cvitanovic, P. Phys. Rev. Lett. 61, 2729–2732 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Pierson, D. & Moss, F. Phys. Rev. Lett. 75, 2124–2127 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Ruelle, D. & Takens, F. Commun math. Phys. 20, 167–192 (1971).

    Article  ADS  Google Scholar 

  12. Ruelle, D. La Richerche 108, 132–246 (1980).

    Google Scholar 

  13. Ruelle, D. in 8th Int. Congress on Math. Phys. (eds Mebkhout, M. & Senior, R.) 273–282 (World Scientific, Singapore, 1987).

    Google Scholar 

  14. May, R. M. Nature 261, 459–467 (1976).

    Article  ADS  CAS  Google Scholar 

  15. May, R. M. Ann. N.Y. Acad. Sci. 316, 517–529 (1979).

    Article  ADS  Google Scholar 

  16. Proc. 2nd Workshop on Measures of Complexity and Chaos (eds Abraham, N. B., Albano, A. M., Passamante, A. P., Rapp, P. E. & Gilmore, R.) Int. J. Bifurc. Chaos 3, 485–490 (1993).

  17. Grassberger, P. & Procaccia, I. Physica D9, 189–208 (1983).

    MathSciNet  Google Scholar 

  18. Wolf, A., Swift, J. B., Swinney, H. L. & Vasano, J. A. Physica D16, 285–317 (1985).

    MathSciNet  Google Scholar 

  19. Sugihara, G. & May, R. M. Nature 344, 734–741 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Science 257, 1230–1235 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Christini, D. J. & Collins, J. J. Phys. Rev. Lett. 75, 2782–2785 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Kennedy, D. J. gen. Physiol. 46, 551–572 (1963).

    Article  CAS  Google Scholar 

  23. Wilkens, L. A. Comp. Biochem. Physiol. 91, 61–68 (1988).

    Article  Google Scholar 

  24. Wilkens, L. A. & Douglass, J. K. J. exp. Biol. 189, 263–272 (1994).

    CAS  PubMed  Google Scholar 

  25. Hayashi, H. & Ishizuka, A. J. theor. Biol. 156, 269–291 (1992).

    Article  Google Scholar 

  26. Bevington, P. R. Data Reduction and Error Analysis 48–49 (McGraw-Hill, New York, 1969).

    Google Scholar 

  27. Ditto, W. L., Rauseo, S. N. & Spano, M. L. Phys. Rev. Lett. 65, 3211–3214 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Hunt, E. R. Phys. Rev. Lett. 67, 1953–1955 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Roy, R., Murphy, T. W., Maier, T. D. & Gills, Z. Phys. Rev. Lett. 68, 1259–1262 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Petrov, V., Gaspar, V., Masere, J. & Showalter, K. Nature 361, 240–243 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Rollins, R. W., Parmananda, P. & Sherard, P. Phys. Rev. E47, R780–R784 (1993).

    ADS  CAS  Google Scholar 

  32. Artuso, R., Aurell, E. & Cvitanovic, P. Nonlinearity 3, 325–360 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  33. Artuso, R., Aurell, E. & Cvitanovic, P. Nonlinearity 3, 361–395 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  34. Shinbrot, R., Grebogi, C., Ott, E. & Yorke, J. A. Nature 363, 411–417 (1993).

    Article  ADS  Google Scholar 

  35. Moon, F. C. Chaotic Vibrations (Wiley, New York, 1987).

    MATH  Google Scholar 

  36. Strogatz, S. H. Nonlinear Dynamics and Chaos Ch. 12 (Addison-Wesley. Reading, 1994).

    Google Scholar 

  37. Herman, H. T. & Olsen, R. E. J. gen Physiol. 51, 534–551 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, X., Moss, F. Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature 379, 618–621 (1996). https://doi.org/10.1038/379618a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379618a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing