Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical conductivity of individual carbon nanotubes

Abstract

THE interest in carbon nanotubes has been greatly stimulated by theoretical predictions that their electronic properties are strongly modulated by small structural variations1–8. In particular, the diameter and the helicity of carbon atoms in the nanotube shell are believed to determine whether the nanotube is metallic or a semiconductor. Because of the enormous technical challenge of making measurements on individual nanotubes, however, experimental studies have been limited mainly to bulk measurements9, which indicate only that a fraction of the nanotubes are metallic or narrow-band semiconductors10. Recently, measurements of the magneto-conductance of a single multi-shell nanotube in a two-probe configuration showed that the transport is characterized by disorder and localization phenomena11. To avoid possible ambiguities due to poor sample contacts, four-probe measurements are needed. Here we report four-probe measurements on single nanotubes made by lithographic deposition of tungsten leads across the tubes. We find that each multi-shell nanotube has unique conductivity properties. Both metallic and non-metallic behaviour are observed, as well as abrupt jumps in conductivity as the temperature is varied. The differences between the electrical properties of different nanotubes are far greater than expected. Our results suggest that differences in geometry play a profound part in determining the electronic behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mintmire, J. W., Dunlap, B. I. & White, C. T. Phys. Rev. Lett. 68, 631–634 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Hamada, N., Sawada, A. & Oshiyama, A. Phys. Rev. Lett. 68, 1579–1581 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Appl. Phys. Lett. 60, 2204–2206 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Tanaka, K., Okahara, K., Okada, M. & Yamabe, T. Chem. Phys. Lett. 191, 469–472 (1992).

    Article  ADS  CAS  Google Scholar 

  5. White, C. T., Robertson, D. H. & Mintmire, J. W. Phys. Rev. B47, 5485–5488 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Jishi, R. A., Dresselhaus, M. S. & Dresselhaus, G. Phys. Rev. B48, 11385–11389 (1993).

    Article  CAS  Google Scholar 

  7. Lambin, Ph., Philippe, L., Charlier, J. C. & Michenaud, J. P. Computat. Mater. Sci. 2, 350–356 (1994).

    Article  CAS  Google Scholar 

  8. Blase, X., Benedict, L. X., Shirley, E. L. & Louie, S. G. Phys. Rev. Lett. 72, 1878–1881 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Ebbesen, T. W. A. Rev. Mater. Sci. 24, 235–264 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Kosaka, M., Ebbesen, T. W., Hiura, H. & Tanigaki, K. Chem. Phys. Lett. 233, 47–51 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Langer, L. et al. Phys. Rev. Lett. 76, 479–482 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Primak, W. & Fuchs, L. H. Phys. Rev. 95, 22–30 (1954).

    Article  ADS  Google Scholar 

  14. Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L. & Goldberg, H. A. in Graphite Fibers and Filaments (eds Gonser, U., Mooradian, A., Muller, K. A., Panish, M. B. & Sakaki, H.) 173–229 (Springer, New York, 1988).

    Book  Google Scholar 

  15. Dai, H., Wong, E. W. & Lieber, C. M. Science 272, 523–526 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Benedict, L. X., Crespi, V. H., Louie, S. G. & Cohen, M. L. Phys. Rev. B52, 14935–14939 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbesen, T., Lezec, H., Hiura, H. et al. Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 (1996). https://doi.org/10.1038/382054a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382054a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing