Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for deep mantle circulation from global tomography

Abstract

Seismic tomography based on P-wave travel times and improved earthquake locations provides further evidence for mantle-wide convective flow. The use of body waves makes it possible to resolve long, narrow structures in the lower mantle some of which can be followed to sites of present-day plate convergence at the Earth's surface. The transition from subduction-related linear structures in the mid-mantle to long-wavelength heterogeneity near the core-mantle boundary remains enigmatic, but at least some slab segments seem to sink to the bottom of the mantle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dziewonski, A. M., Hager, B. H. & O'Connell, R. J. Large-scale heterogeneities in the lower mantle. J. Geophys. Res. 82, 239–255 (1977).

    Article  ADS  Google Scholar 

  2. Dziewonski, A. M. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89, 5929–5952 (1984).

    Article  ADS  Google Scholar 

  3. Carlson, R. W. Mechanisms of Earth differentiation: consequences for the chemical structure of the mantle. Rev. Geophys. 32, 337–362 (1994).

    Article  ADS  Google Scholar 

  4. Hofmann, A. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541–545 (1985).

    Article  ADS  Google Scholar 

  6. Montagner, J.-P. Can seismology tell us anything about convection in the mantle? Rev. Geophys. 32, 115–138 (1994).

    Article  ADS  Google Scholar 

  7. Ritzwoller, M. H. & Lavely, E. M. Three-dimensional seismic model of the Earth's mantle. Rev. Geophys. 33, 1–66 (1995).

    Article  ADS  Google Scholar 

  8. Richards, M. A. & Engebretson, D. C. Large-scale mantle convection and the history of subduction. Nature 355, 437–440 (1992).

    Article  ADS  Google Scholar 

  9. Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Le Stunff, Y. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993).

    Article  ADS  Google Scholar 

  10. Silver, P. G., Carlson, R. W. & Olson, P. Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection: investigations of an enduring paradox. Rev. Earth Planet. Sci. 16, 477–541 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Jordan, T. H., Lerner-Lam, A. L. & Creager, K. C. in Mantle Convection (ed. Peltier, W. R.) 98–201 (Gordon & Breach Scientific, New York, 1989).

    Google Scholar 

  12. Davies, G. F. & Richards, M. A. Mantle convection. J. Geol. 100, 151–206 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Lay, T. The fate of descending slabs. Annu. Rev. Earth Planet. Sci. 22, 33–61 (1994).

    Article  ADS  Google Scholar 

  14. Shearer, P. & Masters, G. Global mapping of topography on the 660-km discontinuity. Nature 355, 791–796 (1992).

    Article  ADS  Google Scholar 

  15. Ito. E. & Takahashi, E. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  16. Christensen, U. R. & Yuen, D. A. The interaction of subducting lithospheric slab with a chemical or phase boundary. J. Geophys. Res. 89, 4389–4402 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Puster, P. & Jordan, T. H. How stratified is mantle convection? J. Geophys. Res. 102, 7625–7646 (1997).

    Article  ADS  Google Scholar 

  18. Creager, K. C. & Jordan, T. H. Slab penetration into the lower mantle below the Mariana and other island arcs of the northwest Pacific. J. Geophys. Res. 91, 3573–3589 (1986).

    Article  ADS  Google Scholar 

  19. Kamiya, S., Miyatake, T. & Hirahara, K. How deep can we see the high velocity anomalies beneath the Japan island arcs? Geophys. Res. Lett. 15, 828–831 (1988).

    Article  ADS  Google Scholar 

  20. Van der Hilst, R. D., Engdahl, E. R., Spakman, W. & Nolet, G. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  21. Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. Subducting slabs stagnant in the mantle transition zone. J. Geophys. Res. 97, 4809–4822 (1992).

    Article  ADS  Google Scholar 

  22. Grand, S. P. Mantle shear structure beneath the Americas and the surrounding oceans. J. Geophys. Res. 99, 11591–11621 (1994).

    Article  ADS  Google Scholar 

  23. Spakman, W., Van der Lee, S., Van der Hilst, R. D. Travel-time tomography of the European-Mediterranean mantle down to 1400km. Phys. Earth Planet. Inter. 79, 3–74 (1993).

    Article  ADS  Google Scholar 

  24. Van der Hilst, R. D. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 374, 154–157 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Widiyantoro, S. & Van der Hilst, R. D. The slab of subducted lithosphere beneath the Sunda arc, Indonesia. Science 271, 1566–1570 (1996).

    Article  ADS  CAS  Google Scholar 

  26. King, S. D. The viscosity structure of the mantle. Rev. Geophys. Suppl. 33, 11–17 (1995).

    Article  ADS  Google Scholar 

  27. Loper, D. E. A simple model of whole mantle convection. J. Geophys. Res. 90, 1809–1836 (1985).

    Article  ADS  Google Scholar 

  28. Hedlin, M., Shearer, P. & Earle, P. S. Seismic evidence for small-scale heterogeneity throughout the Earth's mantle. Nature (in the press).

  29. Krüger, F., Weber, M., Scherbaum, F. & Schlittenhardt, J. Evidence for normal and inhomogenous lowermost mantle and core-mantle boundary structure under the Arctic and northern Canada. Geophys. J. Int. 122, 637–657 (1995).

    Article  ADS  Google Scholar 

  30. Thoraval, C., Machetal, P. & Cazenave, A. Locally layered convection inferred from dynamic models of the Earth's mantle. Nature 375, 777–780 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Machetel, P. & Weber, P. Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature 350, 55–57 (1991).

    Article  ADS  Google Scholar 

  32. Tackley, P. Mantle dynamics: Influence of the transition zone. Rev. Geophys. Suppl. 33, 275–282 (1995).

    Article  ADS  Google Scholar 

  33. Su, W.-J., Woodward, R. L. & Dziewonski, A. M. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res. 99, 6945–6981 (1994).

    Article  ADS  Google Scholar 

  34. Li, X.-D. & Romanowicz, B. Global mantle shear-velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. 101, 22245–22272 (1996).

    Article  ADS  Google Scholar 

  35. Masters, G., Johnson, S., Laske, G. & Bolton, H. A shear-velocity model of the mantle. Phil. Trans. R. Soc. Land. A 354, 1385–1411 (1996).

    Article  ADS  Google Scholar 

  36. Masters, G., Jordan, T. H., Silver, P. G. & Gilbert, F. A spherical Earth structure from fundamental spheroidal-mode data. Nature 298, 609–613 (1982).

    Article  ADS  Google Scholar 

  37. Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y. Whole mantle P-wave travel-time tomography. Phys. Earth Planet. Inter. 59, 294–328 (1990).

    Article  ADS  Google Scholar 

  38. Vasco, D. W., Johnson, L. R., Pulliam, R. J. & Earle, P. S. Robust inversion of IASP91 travel time residuals for mantle P and S velocity structure. J. Geophys. Res. 99, 13727–13755 (1994).

    Article  ADS  Google Scholar 

  39. Engdahl, E. R., Van der Hilst, R. D. & Buland, R. P. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. (submitted).

  40. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Article  ADS  Google Scholar 

  41. Nolet, G. Solving or resolving inadequate and noisy tomographic systems. J. Comput. Phys. 61, 463–482 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  42. Grand, S. P., Van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: a snapshot of convection in the earth. Geol. Soc. Am. Today (in the press).

  43. Wysession, M. E. Continents of the core. Nature 381, 373–374 (1996).

    Article  ADS  CAS  Google Scholar 

  44. Lithgow-Bertelloni, C., Richards, M. A., Ricard, Y., O'Connell, R. J. & Engebretson, D. C. Toroidal-poloidal partitioning of plate motions since 120 Ma. Geophys. Res. Lett. 20, 375–378 (1993).

    Article  ADS  Google Scholar 

  45. Jordan, T. H. & Lynn, W. S. A velocity anomaly in the lower mantle. J. Geophys. Res. 79, 2679–2685 (1974).

    Article  ADS  Google Scholar 

  46. Wen, L. & Anderson, D. L. The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet. Sci. Lett. 133, 185–198 (1995).

    Article  ADS  CAS  Google Scholar 

  47. Van der Hilst, R. D. & Seno, T. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet. Sci. Lett. 120, 375–407 (1993).

    Article  ADS  Google Scholar 

  48. Griffiths, R. W., Hackney, R. & Van der Hilst, R. D. A laboratory investigation of trench migration and the fate of subducted slabs. Earth Planet. Sci. Lett. 133, 1–17 (1995).

    Article  ADS  CAS  Google Scholar 

  49. Christensen, U. R. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett. 140, 27–39 (1996).

    Article  ADS  CAS  Google Scholar 

  50. Kendall, J.-M. & Silver, P. G. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996).

    Article  ADS  CAS  Google Scholar 

  51. Bercovici, D., Schubert, G. & Glatzmaier, G. 3-dimensional spherical-models of convection in the Earth's mantle. Science 244, 950–955 (1989).

    Article  ADS  CAS  Google Scholar 

  52. Bolton, H. & Masters, G. A region of anomolous d ln Vs/d ln Vp in the deep mantle. (abstr.) Eos 77, F6g7 (1996).

  53. Loper, D. & Lay, T. The core-mantle boundary region. J. Geophys. Res. 100, 6397–6420 (1995).

    Article  ADS  Google Scholar 

  54. Nolet, G. & Moser, T.-J. Teleseismic delay times in a 3-dimensional Earth and a new look at the S-discrepancy. Geophys. J. Int. 114, 185–195 (1993).

    Article  ADS  Google Scholar 

  55. Puster, P., Hager, B. H. & Jordan, T. H. Mantle convection experiments with evolving plates. Geophys. Res. Lett. 22, 2223–2226 (1995).

    Article  ADS  Google Scholar 

  56. Bunge, H.-P., Richards, M. A. & Baumgardner, J. R. The effect of viscosity stratification on mantle convection. Nature 379, 436–438 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Hilst, R., Widiyantoro, S. & Engdahl, E. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997). https://doi.org/10.1038/386578a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386578a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing