Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanical unfolding intermediates in titin modules

Abstract

The modular protein titin, which is responsible for the passive elasticity of muscle, is subjected to stretching forces. Previous work on the experimental elongation of single titin molecules has suggested that force causes consecutive unfolding of each domain in an all-or-none fashion1,2,3,4,5,6. To avoid problems associated with the heterogeneity of the modular, naturally occurring titin, we engineered single proteins to have multiple copies of single immunoglobulin domains of human cardiac titin7. Here we report the elongation of these molecules using the atomic force microscope. We find an abrupt extension of each domain by 7 Å before the first unfolding event. This fast initial extension before a full unfolding event produces a reversible ‘unfolding intermediate’. Steered molecular dynamics8,9 simulations show that the rupture of a pair of hydrogen bonds near the amino terminus of the protein domain causes an extension of about 6 Å, which is in good agreement with our observations. Disruption of these hydrogen bonds by site-directed mutagenesis eliminates the unfolding intermediate. The unfolding intermediate extends titin domains by 15% of their slack length, and is therefore likely to be an important previously unrecognized component of titin elasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Force peaks corresponding to the sequential unfolding of immunoglobulin-like domains of human cardiac titin, showing large hump-like deviations from the WLC model of entropic elasticity (arrows).
Figure 2: The size of the hump-like deviation depends linearly on the number of folded modules.
Figure 3: Steered molecular dynamics simulations of I27 extensibility under constant force.
Figure 4: Removal of the deviation from the WLC model by introducing a point mutation in the I27 polyprotein (I279-K6P).

Similar content being viewed by others

References

  1. Erickson,H. P. Stretching single protein molecules: titin is a weird spring. Science 276, 1090–1092 (1997).

    Article  CAS  Google Scholar 

  2. Tskhovrebova,L., Trinick,J., Sleep,J. A. & Simmons,R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Kellermayer,M. S. Z., Smith,S. B., Granzier,H. L. & Bustamante,C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  4. Kellermayer,M. S. Z., Smith,S. B., Bustamante,C. & Granzier,H. L. Complete unfolding of the titin molecule under external force. J. Struct. Biol. 122, 197–205 (1998).

    Article  CAS  Google Scholar 

  5. Rief,M., Gautel,M., Oesterhelt,F., Fernandez,J. M. & Gaub,H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  6. Rief,M., Fernandez,J. M. & Gaub,H. E. Elastically coupled two-level-systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Carrion-Vazquez,M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Lu,H. & Schulten,K. Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins Struct. Funct., Genet. 35, 453–463 (1999).

    Article  Google Scholar 

  9. Izrailev,I., Stepaniants,S., Balsera,M., Oono,Y. & Schulten,K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72, 1568–1581 (1997).

    Article  CAS  Google Scholar 

  10. Soteriou,A., Clarke,A., Martin,S. & Trinick,J. Titin folding energy and elasticity. Proc. R. Soc. Lond. B 254, 83–86 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Politou,A. S., Thomas,D. J. & Pastore,A. The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys. J. 69, 2601–2610 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Politou,A. S., Gautel,M., Improta,S., Vangelista,L. & Pastore,A. The elastic I-band region of titin is assembled in a “modular” fashion by weakly interacting Ig-like domains. J. Mol. Biol. 255, 604–616 (1996).

    Article  CAS  Google Scholar 

  13. Improta,S. et al. The assembly of immunoglobulin-like modules in titin: implications for muscle elasticity. J. Mol. Biol. 284, 761–777 (1998).

    Article  CAS  Google Scholar 

  14. Granzier,H., Helmes,M. & Trombitas,K. Nonuniform elasticity of titin in cardiac myocytes: A study using immunoelectron microscopy and cellular mechanics. Biophys. J. 70, 430–442 (1996).

    Article  CAS  Google Scholar 

  15. Granzier,H., Kellermayer,M., Helmes,M. & Trobitas,K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys. J. 73, 2043–2053 (1997).

    Article  CAS  Google Scholar 

  16. Trombitas,K. et al. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J. Cell Biol. 140, 853–859 (1998).

    Article  CAS  Google Scholar 

  17. Labeit,S. & Kolmerer,B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Labeit,S., Kolmerer,B. & Linke,W. A. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res. 80, 290–294 (1997).

    Article  CAS  Google Scholar 

  19. Linke,W. A., Stockmeier,M. R., Ivemeyer,M., Hosser,H. & Mundel,P. Characterizing titin's I-band Ig domain region as an entropic spring. J. Cell Sci. 111, 1567–1574 (1998).

    CAS  Google Scholar 

  20. Gautel,M. & Goulding,D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett. 385, 11–14 (1996).

    Article  CAS  Google Scholar 

  21. Rief,M., Pascual,J., Saraste,M. & Gaub,H. E. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286, 553–561 (1999).

    Article  CAS  Google Scholar 

  22. Marszalek,P. E., Oberhauser,A. F., Pang,Y.-P. & Fernandez,J. M. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Lu,H., Isralewitz,B., Krammer,A., Vogel,V. & Schulten,K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Evans,E. & Ritchie,K. Strength of a weak bond connecting flexible polymer chains. Biophys. J. 76, 2439–2447 (1999).

    Article  CAS  Google Scholar 

  25. Hermans,J., Berendsen,H. J. C., Van Gunsteren,W. F. & Postma,J. P. M. A consistent empirical potential for water-protein interactions. Biopolymers 23, 1513–1518 (1984).

    Article  CAS  Google Scholar 

  26. Oberhauser,A. F., Marszalek,P. E., Erickson,H. P. & Fernandez,J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Florin,E. L. et al. Sensing specific molecular interactions with the atomic force microscope. Biosens. Biolelectr. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

  28. Nelson,M. et al. NAMD—A parallel, object-oriented molecular dynamics program. Int. J. Supercomputer Applications and High Performance Computing. 10, 251–268 (1996).

    Article  Google Scholar 

  29. Brunger,A. X-PLOR, Version 3.1: A System for X-ray Crystallography and NMR (Yale Univ., New Haven & London, 1992).

    Google Scholar 

  30. Humphrey,W. F., Dalke,A. & Schulten,K. VMD-visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gautel for a gift of the I27-134/pET8c plasmid, and T. Fisher for comments on the manuscript. This work was supported by NIH and NSF grants to J.M.F., P.E.M. A.F.O. and K.S., and by the Roy J. Carver Charitable Trust to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio M. Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marszalek, P., Lu, H., Li, H. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999). https://doi.org/10.1038/47083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47083

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing