Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise

Much evidence suggests that the fusiform face area is involved in face processing. In contrast to the accompanying article by Kanwisher, we conclude that the apparent face selectivity of this area reflects a more generalized form of processing not intrinsically specific to faces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of Greebles.
Figure 2: Complex selectivity of IT cells.

References

  1. Kanwisher, N., Tong, F. & Nakayama, K. The effect of face inversion on the human fusiform face area. Cognition 68, B1– 11 (1998).

    Article  CAS  Google Scholar 

  2. Bentin, S., Deouell, L. Y. & Soroker, N. Selective visual streaming in face recognition: evidence from developmental prosopagnosia. Neuroreport 10, 823–827 (1999).

    Article  CAS  Google Scholar 

  3. Puce, A., Allison, T. & McCarthy, G. Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cereb. Cortex 9, 445–458 (1999).

    Article  CAS  Google Scholar 

  4. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  5. Kanwisher, N., Stanley, D. & Harris, A. The fusiform face area is selective for faces not animals . Neuroreport 10, 183–187 (1999).

    Article  CAS  Google Scholar 

  6. Aguirre, G. K., Zarahn, E. & D'Esposito, M. An area within human ventral cortex sensitive to “building” stimuli: Evidence and implications. Neuron 21, 373–383 (1998).

    Article  CAS  Google Scholar 

  7. Haxby, J. V. et al. The effect of face inversion on activity in human neural systems for face and object perception. Neuron 22, 189–199 (1999).

    Article  CAS  Google Scholar 

  8. Yin, R. K. Looking at upside-down faces. J. Exp. Psychol. Gen. 81, 141–145 (1969).

    Article  Google Scholar 

  9. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects . Nat. Neurosci. 2, 568– 573 (1999).

    Article  CAS  Google Scholar 

  10. Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans . J. Cognit. Neurosci. 8, 551– 565 (1996).

    Article  Google Scholar 

  11. Jeffreys, D. A. A face-responsive potential recorded from the human scalp. Exp. Brain Res. 78, 193–202 ( 1989).

    Article  CAS  Google Scholar 

  12. Liu, J., Higuchi, M., Marantz, A. & Kanwisher, N. The selectivity of the occipitotemporal M170 for faces. Neuroreport 7, 337–341 (2000).

    Article  Google Scholar 

  13. Rossion, B. et al. The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: An electrophysiological account of face-specific processes in the human brain. Neuroreport 11, 69–74 (2000).

    Article  CAS  Google Scholar 

  14. McCarthy, G., Puce, A., Belger, A. & Allison, T. Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 5, 431–444 ( 1999).

    Article  Google Scholar 

  15. Chao, L. L., Haxby, J. V. & Martin, A. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat. Neurosci. 2, 913–919 (1999).

    Article  CAS  Google Scholar 

  16. Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L. & Haxby, J. Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. USA 96, 9379–9384 ( 1999).

    Article  CAS  Google Scholar 

  17. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    Article  CAS  Google Scholar 

  18. Puce, A., Allison, T., Asgari, M., Gore, J. C. & McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: A functional magnetic resonance imaging study . J. Neurosci. 16, 5205– 5215 (1996).

    Article  CAS  Google Scholar 

  19. Gauthier, I. What constrains the organization of the ventral temporal cortex? Trends Cogn. Sci. 4, 1–2 (2000).

    Article  CAS  Google Scholar 

  20. Damasio, A. R., Damasio, H. & Van Hoesen, G. W. Prosopagnosia: Anatomical basis and behavioral mechanisms . Neurology 32, 331–341 (1982).

    Article  CAS  Google Scholar 

  21. Diamond, R. & Carey, S. Why faces are and are not special: An effect of expertise. J. Exp. Psychol. Gen. 115, 107–117 (1986).

    Article  CAS  Google Scholar 

  22. Tanaka, J. W. & Gauthier, I. in Mechanisms of Perceptual Learning (eds. Goldstone, R. L., Medin, D. L. & Schyns, P. G.) 83– 125 (Academic, San Diego, California, 1997).

    Google Scholar 

  23. Haxby, J. V. et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc. Natl. Acad. Sci. USA 88, 1621–1625 (1991).

    Article  CAS  Google Scholar 

  24. Sergent, J., Ohta, S. & MacDonald, B. Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain 115, 15–36 (1992).

    Article  Google Scholar 

  25. Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition . Nat. Neurosci. 3, 191– 197 (2000).

    Article  CAS  Google Scholar 

  26. Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P. & Gore, J. C. Levels of categorization in visual object studied with functional MRI. Curr. Biol. 7, 645–651 (1997).

    Article  CAS  Google Scholar 

  27. Gauthier, I. et al. Does visual subordinate-level categorisation engage the functionally defined Fusiform Face Area? Cognit. Neuropsychol. 17 , 143–163 (2000).

    Article  CAS  Google Scholar 

  28. Chao, L. L., Martin, A. & Haxby, J. V. Are face-responsive regions selective only for faces? Neuroreport 10, 2945–2950 (1999).

    Article  CAS  Google Scholar 

  29. Gaffan, D. & Heywood, C. A. A spurious category-specific agnosia for living things in normal human and nonhuman primates. J. Cogn. Neurosci. 5, 118–128 (1994).

    Article  Google Scholar 

  30. Halgren, E. et al. Location of human face-selective cortex with respect to retinotopic areas. Hum. Brain Mapp. 7, 29– 37 (1999).

    Article  CAS  Google Scholar 

  31. Gauthier, I. et al. The fusiform “face area” is part of a network that processes faces at the individual level. J. Cogn. Neurosci. 12, 495–504 ( 2000).

    Article  CAS  Google Scholar 

  32. Rossion, B. et al. Hemispheric asymmetries for whole-based and part-based face processing in the human brain. J. Cogn. Neurosci. (in press).

  33. Tanaka, J. W. & Curran, T. A neural basis for expert object recognition. Psychol. Sci. (in press).

  34. Hoffman, E. A. & Haxby, J. V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception . Nat. Neurosci. 3, 80– 84 (2000).

    Article  CAS  Google Scholar 

  35. Tranel, D., Damasio, A. R. & Damasio, H. Intact recognition of facial expression, gender and age in patients with impaired recognition of face identity. Neurology 38, 690–696 ( 1998).

    Article  Google Scholar 

  36. Gauthier, I., Behrmann, M. & Tarr, M. J. Can face recognition really be dissociated from object recognition? J. Cogn. Neurosci. 11, 349– 370 (1999).

    Article  CAS  Google Scholar 

  37. Schultz, R. T. et al. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and asperger syndrome. Arch. Gen. Psychiatry 57, 331–340 ( 2000).

    Article  CAS  Google Scholar 

  38. Moscovitch, M., Winocur, G. & Behrmann, M. What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition . J. Cogn. Neurosci. 9, 555– 604 (1997).

    Article  CAS  Google Scholar 

  39. Gauthier, I. & Tarr, M. J. Becoming a “Greeble” expert: Exploring the face recognition mechanism. Vision Res. 37, 1673–1682 (1997).

    Article  CAS  Google Scholar 

  40. Farah, M. J., Levinson, K. L. & Klein, K. L. Face perception and within-category discrimination in prosopagnosia. Neuropsychologia 33, 661 –674 (1995).

    Article  CAS  Google Scholar 

  41. McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).

    Article  CAS  Google Scholar 

  42. Jolicoeur, P., Gluck, M. & Kosslyn, S. M. Pictures and names: Making the connection. Cognit. Psychol. 16, 243–275 (1984).

    Article  CAS  Google Scholar 

  43. Gauthier, I., Williams, P., Tarr, M. J. & Tanaka, J. Training “Greeble” experts: A framework for studying expert object recognition processes. Vision Res. 38, 2401 –2428 (1998).

    Article  CAS  Google Scholar 

  44. Tong, F., Nakayama, K., Moscovitch, M., Weinrib, O. & Kanwisher, N. Response properties of the human fusiform face area. Cognit. Neuropsychol. 17, 257–279 (2000).

    Article  CAS  Google Scholar 

  45. Perrett, D. I., Rolls, E. T. & Caan, W. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329– 342 (1982).

    Article  CAS  Google Scholar 

  46. Kobatake, E., Wang, G. & Tanaka, K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80, 324–330 (1998).

    Article  CAS  Google Scholar 

  47. Logothetis, N. K. & Pauls, J. Psychophysical and physiological evidence for viewer-centered object representation in the primate . Cereb. Cortex 3, 270– 288 (1995).

    Article  Google Scholar 

  48. Kanwisher, N., Downing, P., Epstein, R. & Kourtzi, Z. in Handbook of Functional Neuroimaging of Cognition (eds. Cabeza, R. & Kingstone, A.) (MIT Press, Cambridge, MA, in press).

  49. Sheinberg, D. L. & Logothetis, N. K. in Perceptual Learning (ed. Fahle, M.) (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

Download references

Acknowledgements

This work was a collaborative effort, and the order of authorship is arbitrary. We thank D. Sheinberg for his careful reading of this review. M.J.T. thanks S. Pinker for a challenging discussion on some of the issues raised here; I.G. thanks N. Kanwisher for many stimulating discussions on our diverging opinions. This work was supported by NSF Award SBR-9615819.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarr, M., Gauthier, I. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat Neurosci 3, 764–769 (2000). https://doi.org/10.1038/77666

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing