Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient computation and cue integration with noisy population codes

Abstract

The brain represents sensory and motor variables through the activity of large populations of neurons. It is not understood how the nervous system computes with these population codes, given that individual neurons are noisy and thus unreliable. We focus here on two general types of computation, function approximation and cue integration, as these are powerful enough to handle a range of tasks, including sensorimotor transformations, feature extraction in sensory systems and multisensory integration. We demonstrate that a particular class of neural networks, basis function networks with multidimensional attractors, can perform both types of computation optimally with noisy neurons. Moreover, neurons in the intermediate layers of our model show response properties similar to those observed in several multimodal cortical areas. Thus, basis function networks with multidimensional attractors may be used by the brain to compute efficiently with population codes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A network that performs function approximation and cue integration optimally in the presence of noise.
Figure 2: Network connections.
Figure 3: The eye-centered receptive field of the network units for three positions of the eyes (xe).

Similar content being viewed by others

References

  1. Pouget, A. & Snyder, L. Computational approaches to sensorimotor transformations. Nat. Neurosci. 3, 1192–1198 (2000).

    Article  CAS  Google Scholar 

  2. Poggio, T. A theory of how the brain might work. Cold Spring Harb. Symp. Quant. Biol. 55, 899–910 (1990).

    Article  CAS  Google Scholar 

  3. Hubel, D. & Weisel, T. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  4. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    Article  CAS  Google Scholar 

  5. Deneve, S., Latham, P. & Pouget, A. Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2, 740–745 (1999).

    Article  CAS  Google Scholar 

  6. Pouget, A. & Sejnowski, T. Spatial transformations in the parietal cortex using basis functions. J. Cogn. Neurosci. 9, 222–237 (1997).

    Article  CAS  Google Scholar 

  7. Westheimer, G. & Tanzman, I. Qualitative depth localization with diplopic images. J. Opt. Soc. Am. 46, 116–117 (1956).

    Article  CAS  Google Scholar 

  8. Andersen, R., Essick, G. & Siegel, R. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    Article  CAS  Google Scholar 

  9. Duhamel, J., Bremmer, F., BenHamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848 (1997).

    Article  CAS  Google Scholar 

  10. Yuille, A. L. & Bulthoff, H. H. in Perception as Bayesian Inference (eds. Knill, D. C. & Richards, W.) 123–162 (University Press, New York, Cambridge, 1996).

    Book  Google Scholar 

  11. Papoulis, A. Probability, Random Variables, and Stochastic Process (McGraw-Hill, New York, 1991).

    Google Scholar 

  12. Paradiso, M. A theory of the use of visual orientation information which exploits the columnar structure of striate cortex. Biol. Cybern. 58, 35–49 (1988).

    Article  CAS  Google Scholar 

  13. Seung, H. & Sompolinsky, H. Simple model for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

    Article  CAS  Google Scholar 

  14. Tolhurst, D., Movshon, J. & Dean, A. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 (1982).

    Article  Google Scholar 

  15. Salinas, E. & Abbot, L. Transfer of coded information from sensory to motor networks. J. Neurosci. 15, 6461–6474 (1995).

    Article  CAS  Google Scholar 

  16. McAdams, C. J. & Maunsell, J. R. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  Google Scholar 

  17. Braitenberg, V. & Schuz, A. Anatomy of the Cortex (Springer, Berlin, 1991).

    Book  Google Scholar 

  18. Boussaoud, D., Barth, T. & Wise, S. Effects of gaze on apparent visual responses of frontal cortex neurons. Exp. Brain Res. 93, 423–434 (1993).

    Article  CAS  Google Scholar 

  19. Bremmer, F., Ilg, U., Thiele, A., Distler, C. & Hoffman, K. Eye position effects in monkey cortex. I: Visual and pursuit-related activity in extrastriate areas MT and MST. J. Neurophysiol. 77, 944–961 (1997).

    Article  CAS  Google Scholar 

  20. Trotter, Y. & Celebrini, S. Gaze direction controls response gain in primary visual-cortex neurons. Nature 398, 239–242 (1999).

    Article  CAS  Google Scholar 

  21. Jay, M. F. & Sparks, D. L. Sensorimotor integration in the primate superior colliculus: I. Motor convergence. J. Neurophysiol. 57, 22–34 (1987).

    Article  CAS  Google Scholar 

  22. Graziano, M., Yap, G. & Gross, C. Coding of visual space by premotor neurons. Science 266, 1054–1057 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.P and S.D. are supported by grants from NIH (MH57823-05), ONR (N00014-00-1-0642) and a fellowship from the McDonnell-Pew Foundation. P.E.L. is supported by a grant from NIH (MH62447-01). We thank J.-R. Duhamel for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pouget.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deneve, S., Latham, P. & Pouget, A. Efficient computation and cue integration with noisy population codes. Nat Neurosci 4, 826–831 (2001). https://doi.org/10.1038/90541

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90541

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing