Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomimetism and bioinspiration as tools for the design of innovative materials and systems

Abstract

Materials found in nature combine many inspiring properties such as sophistication, miniaturization, hierarchical organizations, hybridation, resistance and adaptability. Elucidating the basic components and building principles selected by evolution to propose more reliable, efficient and environment-respecting materials requires a multidisciplinary approach.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Silicic skeletons of unicellular organisms.
Figure 2: Collagen supramolecular arrangements in biological tissues and self-assembled structures.
Figure 3: Ordered organic and mineral networks in the crab cuticle and self-assembled structures.
Figure 4: Multiscale porous materials in vivo and in vitro.
Figure 5: Original textures of synthetic hybrid inorganic materials.
Figure 6: Complex morphologies attainable in triblock copolymers.
Figure 7: Natural and bioinspired superhydrophobic coatings126.

Similar content being viewed by others

References

  1. Bensaude-Vincent, B., Arribart, H., Bouligand, Y. & Sanchez, C. Chemists and the school of nature. New J. Chem. 1, 1–5 (2002).

    Article  CAS  Google Scholar 

  2. Mann, S. in Biomimetic Materials Chemistry (ed. Mann, S) 1–40 (Wiley-VCH, Weinheim, 1997).

    Google Scholar 

  3. Biomimétisme et Matériaux Arago 25 (coord. Sanchez, C.) (OFTA, Paris, 2001).

  4. Calvert, P. in Biomimetic Materials Chemistry (ed. Mann, S.) 315–336 (Wiley-VCH, Weinheim, 1997).

    Google Scholar 

  5. Biomimetics: Design and Processing of Materials (eds. Sarikaya, M. & Aksay, I). (AIP, Woodbury, Connecticut, 1995).

  6. Bäuerlein, E. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Edn 42, 614–641 (2003).

    Article  Google Scholar 

  7. Weiner, S. & Wagner, H. D. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    Article  CAS  Google Scholar 

  8. Evans, J. H. & Barbenel, J. C. Structural and mechanical properties of tendon related to function. Equine Vet. J. 7, 1–8 (1975).

    Article  CAS  Google Scholar 

  9. Meek, K. M. & Fullwood, N. J. Corneal and scleral collagens - a microscopist's perspective. Micron 32, 261–272 (2001).

    Article  CAS  Google Scholar 

  10. Neville, A. C. Biology of the Arthropod Cuticle (ed. Farner, D. S.) (Springer, Berlin, 1975)

    Book  Google Scholar 

  11. Giraud-Guille, M. M. Twisted liquid crystalline supramolecular arrangements in morphogenesis. Int. Rev. Cytol. 166, 59–101 (1996).

    Article  CAS  Google Scholar 

  12. Peytcheva, A. & Antonietti, M. Carving on the nanoscale: Polymers for the site-specific dissolution of calcium phosphate. Angew. Chem. Int. Edn 17, 3380–3383 (2001).

    Article  Google Scholar 

  13. Sleytr, U. B., Schuster, B. & Pum, D. Nanotechnology and biomimetics with 2-D protein crystals. IEEE Eng. Med. Biol. Mag. 22, 140–50 (2003).

    Article  CAS  Google Scholar 

  14. Kenichi, K., Kazushi, F., Junzo, S. & Kazunari, A. Hierarchical self-assembly of hydrophobically modified pullulan in water: gelation by networks of nanoparticles. Langmuir 18, 3780–3786 (2002).

    Article  CAS  Google Scholar 

  15. Dittmar, A. & Delhomme, G. in Microsystèmes Arago 21 (ed. Masson, A.) 123–160 (OFTA, Paris, 1999).

    Google Scholar 

  16. Hierarchical Structures in Biology as a Guide for New Materials Technology (coord. Tirrell, D. A.) 1–130 (National Material Advisory Board, The National Academic press, Washington DC, 1994).

  17. Mann, S. et al. Sol-gel synthesis of organized matter. Chem. Mater. 9, 2300–2310 (1997).

    Article  CAS  Google Scholar 

  18. Ozin, G. A. Panoscopic materials : synthesis over 'all' length scales. Chem. Commun. 6, 419–432 (2000).

    Article  Google Scholar 

  19. Mann, S. & Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996).

    Article  CAS  Google Scholar 

  20. Soler-Illia, G. J. A. A., Sanchez, C., Lebeau, B. & Patarin, J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4138 (2002).

    Article  CAS  Google Scholar 

  21. Van Bommel, K. J. C., Friggeri, A. & Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Edn 42, 980–999 (2003).

    Article  CAS  Google Scholar 

  22. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  23. Monnier, A. et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299–1303 (1993).

    Article  CAS  Google Scholar 

  24. Qisheng Huo, D. I. et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317–321 (1994).

    Article  Google Scholar 

  25. Bagshaw, S. A., Prouzet, E. & Pinnavaia, T. J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269, 1242–1244 (1995).

    Article  Google Scholar 

  26. Yang, H., Ozin, G. A. & Kresge, C. T. The role of defects in the formation of mesoporous silica fibers, films, and curved shapes. Adv. Mater. 10, 883–887 (1998).

    Article  CAS  Google Scholar 

  27. Stupp, S. I. & Braun, P. V. Molecular manipulation of microstructures: biomaterials, ceramics and semiconductors. Science 277, 1242–1248 (1999).

    Article  Google Scholar 

  28. Braun, P. V., Osenar, P., Tohver, V., Kennedy, S. B. & Stupp, S. I. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals. J. Am. Chem. Soc. 121, 7302–7309 (1999).

    Article  CAS  Google Scholar 

  29. Göltner, C. G. & Antonietti, M. Mesoporous materials by templating of liquid crystalline phase. Adv. Mater. 9, 431–436 (1997).

    Article  Google Scholar 

  30. Schüth, F. Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 13, 3184–3195 (2001).

    Article  CAS  Google Scholar 

  31. Sayari, A. & Liu, P. Non-silica periodic mesostructured materials: recent progress. Micropor. Mater. 12, 149–177 (1997).

    Article  CAS  Google Scholar 

  32. Sanchez, C. et al. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13, 3061–3083 (2001).

    Article  CAS  Google Scholar 

  33. Stupp, S. I. et al. Supramolecular materials : self-organized nanostructures. Science 1276, 384–389 (1997).

    Article  Google Scholar 

  34. Ozin, G. A., Yang, H. & Coombs, N. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 386, 692–695 (1997).

    Article  Google Scholar 

  35. Tolbert, S. H., Firouzi, A., Stucky, G. D. & Chmelka, B. F. Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278, 264–268 (1997).

    Article  CAS  Google Scholar 

  36. Schmidt-Winkel, P., Yang, P., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Fluoride-induced hierarchical ordering of mesoporous silica in aqueous acid-syntheses. Adv. Mater. 11, 303–307 (1999).

    Article  CAS  Google Scholar 

  37. Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).

    Article  CAS  Google Scholar 

  38. Sellinger, A. et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 394, 256–260 (1998).

    Article  CAS  Google Scholar 

  39. Sanchez, C., Soler-Illia, G. J. A. A., Ribot, F. & Grosso, D. Design of functional nano-structured materials through the use of controlled hybrid organic-inorganic interfaces. C. R. Chimie 6, 1131–1151(2003).

    Article  CAS  Google Scholar 

  40. Sedon, A. M. Patel, H. M., Burkett, S. L. & Mann, S. Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture. Angew. Chem. Int. Edn 41, 2988–2991 (2002).

    Article  Google Scholar 

  41. Shenton, W., Douglas, T., Young, M., Stubbs, G. & Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253–256 (1999).

    Article  CAS  Google Scholar 

  42. Li, M. & Mann, S. DNA-directed assembly of multifunctional nanoparticle networks using metallic and bioinorganic building blocks. J. Mater. Chem. 14, 2260–2263 (2004).

    Article  CAS  Google Scholar 

  43. Li, M., Schnablegger, H., & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization Nature 402, 393–395 (1999).

    Article  CAS  Google Scholar 

  44. Li, M., Lebeau, B. & Mann, S. Synthesis of aragonite nanofilament networks by mesoscale self-assembly and transformation in reverse microemulsions. Adv. Mater. 15, 2032–2035 (2003).

    Article  CAS  Google Scholar 

  45. Mann, S. The chemistry of form. Angew. Chem. Int. Edn 39, 3392–3406 (2000).

    Article  CAS  Google Scholar 

  46. Lehn, J. M. Cryptates: inclusion complexes of macropolyciclic receptor molecules. Pure Appl. Chem. 50, 871–892 (1978).

    Article  CAS  Google Scholar 

  47. Lehn, J. M. Supramolecular Chemistry: concepts and perspectives (Wiley-VCH, Weinheim, 1995).

    Book  Google Scholar 

  48. Lehn, J. M. in Biomimetic Chemistry (eds Yoshida, Z. I. & Kodansha, N. I.) (Elsevier, Amsterdam, 1983).

    Google Scholar 

  49. Lehn, J. M. Supramolecular chemistry: from molecular information towards self-organization and complex matter. Rep. Prog. Phys. 67, 249–265 (2004).

    Article  Google Scholar 

  50. Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2011 (1998).

    Article  CAS  Google Scholar 

  51. Vigneron, J. P. in Biomimétisme et Matériaux Arago 25 (coord. Sanchez, C.) 343–361 (OFTA, Paris, 2001).

    Google Scholar 

  52. Haupt, K. & Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000).

    Article  CAS  Google Scholar 

  53. Haupt, K. & Fradet, A. in Biomimétisme et Matériaux Arago 25 (coord. Sanchez, C.) 363–377 (OFTA, Paris 2001).

    Google Scholar 

  54. Livage, L. Henry, M. & Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–342 (1988).

    Article  CAS  Google Scholar 

  55. Brinker, C. J. & Scherrer, G. W. The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, 1990).

    Google Scholar 

  56. Functional Hybrid Materials (eds. Gómez-Romero, P. & Sanchez, C.) (Wiley-VCH, Weinheim, 2003).

  57. Sanchez, C., Lebeau, B., Boilot, J. P. & Chaput, F. Optical properties of functional hybrid organic-inorganic nanocomposites. Adv. Mater. 15, 1969–1976 (2003).

    Article  CAS  Google Scholar 

  58. Rottman, C. & Avnir, D. Getting a library of activities from a single compound: tunability and very large shifts in Acidity constants induced by sol-gel entrapped micelles. J. Am. Chem. Soc. 123, 5730–5734 (2001).

    Article  CAS  Google Scholar 

  59. Rottman, C., Grader, G., De Hazan, Y., Melchior, S. & Avnir, D. Surfactant-induced modifictaion of dopants reactivity in sol-gel matrixes. J. Am. Chem. Soc. 121, 8533–8543 (1999).

    Article  CAS  Google Scholar 

  60. Schaudel, B., Guermeur, C., Sanchez, C. Nakatani, K. & Delaire, B. Spirooxazine- and spiropyran-doped hybrid organic-inorganic matrices with very fast photochromic responses. J. Mater. Chem. 7, 61–65 (1997).

    Article  CAS  Google Scholar 

  61. Ribot, F., Lafuma, A., Eychenne-Baron, C. & Sanchez, C. New photochromic hybrid organic-inorganic materials built from well-defined nano-building blocks. Adv. Mater. 14, 1496–1499 (2002).

    Article  CAS  Google Scholar 

  62. Lebeau, B., Brasselet, S., Zyss, J. & Sanchez, C. Design, characterization, and processing of hybrid organic-inorganic coatings with very high second-order optical nonlinearities. Chem. Mater. 9, 1012–1020 (1997).

    Article  CAS  Google Scholar 

  63. Nanostructured and functional materials. Chem. Mater. 13, 3059–3809 (2001).

  64. Hybrid organic-inorganic materials. Mater. Res. Soc. Bull. 26, (2001).

  65. Niemeyer, C. F., Buelent Ceyhan, Noyong, M. & Simon, U. Bifunctional DNA-gold nanoparticle conjugates as building blocks for the self-assembly of cross-linked paricle layers. Biochem. Biophys. Res. Commun. 311, 995–999 (2003).

    Article  CAS  Google Scholar 

  66. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  CAS  Google Scholar 

  67. Mei, Li & Mann, S. DNA-directed assembly of multifunctional nanoparticle networks using metallic and bioorganic building blocks. J. Mater. Chem. 14, 2260–2263 (2004).

    Article  CAS  Google Scholar 

  68. Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Amer. Chem. Soc. 125, 1643–1654 (2003).

    Article  CAS  Google Scholar 

  69. Nagle, L., Ryan, D., Cobbe, S. & Fitzmaurice, D. Templated nanoparticle assembly on the surface of a patterned nanosphere. Nano Lett. 3, 51–53 (2003).

    Article  CAS  Google Scholar 

  70. Iacopino, D., Ongaro, A., Nagle, L., Eritja, R. & Fitzmaurice, D. Imaging the DNA and nanoparticle components of a self-assembled nanoscale architecture. Nanotechnology 14, 447–452 (2003).

    Article  CAS  Google Scholar 

  71. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  72. Avnir, D., Braun, S., Lev, O. & Ottolenghi, M. Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater. 6, 1605–1614 (1994).

    Article  CAS  Google Scholar 

  73. Livage, J. Bioactivity in sol-gel glasses C. R. Acad. Sci. Paris 322, 417–427 (1996).

    CAS  Google Scholar 

  74. Livage, J., Coradin, T. & Roux, C. in Functional Hybrid Materials, Bioactive sol gel hybrids (eds Gómez-Romero, P. & Sanchez, C.) Ch. 11, 387–401 (Wiley-VCH. Weinheim, 2003).

    Google Scholar 

  75. Livage, J., Coradin, T. & Roux, C. Encapsulation of biomolecules in silica gels. J. Phys. Condens. Matter 13, R673–R691 (2001).

    Article  CAS  Google Scholar 

  76. Nassif, N. et al. Living bacteria in silica gels. Nature Mater. 1, 42–44 (2002).

    Article  CAS  Google Scholar 

  77. Alper, M. Biology and materials. Synthesis part I. Mat. Res. Soc. Bull. 17, 24–25 (1992).

    Article  Google Scholar 

  78. Alper, M. Biology and Materials. Synthesis part II Mater. Res. Soc. Bull. 17, 36–37 (1992).

    Article  Google Scholar 

  79. Gill, I. Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem. Mater. 13, 3404–3421 (2001).

    Article  CAS  Google Scholar 

  80. Mornet, S. et al. DNA-magnetite nanocomposite materials. Mater. Lett. 42, 183–188 (2000).

    Article  CAS  Google Scholar 

  81. Mann, S., Shenton, W., Li, M., Connolly, S. & Fitzmaurice, D. Biologically programmed nanoparticle assembly. Adv. Mater. 12, 147–150 (2000).

    Article  CAS  Google Scholar 

  82. Connolly, S. & Fitzmaurice, D. Programmed assembly of gold nanocrystals in aqueous solution. Adv. Mater. 11, 1202–1205 (1999).

    Article  CAS  Google Scholar 

  83. Shenton, W., Davis, S. A. & Mann, S. Directed self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition. Adv. Mater. 11, 449–452 (1999).

    Article  CAS  Google Scholar 

  84. Mirkin, C. A. Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 39, 2258–2272 (2000).

    Article  CAS  Google Scholar 

  85. Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  86. Gillitzer, E., Willits, D., Young, M. & Douglas, T. Chemical modification of a viral cage for multivalent presentation. Chem. Comm. 2390–2391 (2002).

  87. Flynn, C. E., Lee, S. W. Peele, B. R. & Belcher, A. M. Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51, 5867–5880 (2003).

    Article  CAS  Google Scholar 

  88. Wang, O., Lin, T., Tang, L., Johnson, J. E. & Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Edn 41, 459–462 (2002).

    Article  CAS  Google Scholar 

  89. Antoniettti, M. Self-organization of functional polymers. Nature Mater. 2, 9–10 (2002).

    Article  CAS  Google Scholar 

  90. Ha, Y. H. et al. Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton. Adv. Mater. 16, 1091–1094 (2004).

    Article  CAS  Google Scholar 

  91. Sundar, V. C., Yablon, A. D., Grazul, J. L., Ilan, M. & Aizenberg, J. Fibre-optical features of a glass sponge. Nature 424, 899–900 (2003).

    Article  CAS  Google Scholar 

  92. Zhou, Y. & Antonietti, M. A series of highly ordered super-microporous, lamellar silicas prepared by nanocasting with ionic liquids. Chem. Mater. 16, 544–550 (2004).

    Article  CAS  Google Scholar 

  93. Volkmer, D., Tugulu, S., Fricke, M. & Nielsen, T. Morphosynthesis of star-shaped titania-silica shells. Angew. Chem. Int. Edn 42, 58–61 (2003).

    Article  CAS  Google Scholar 

  94. Richardi, J., Motte, L. & Pileni, M. P. Mesoscopic organisations of magnetic nanocrystals: the influence of short-range interactions. Curr. Opin. Colloid Interface Sci. 9, 185–191 (2004).

    Article  CAS  Google Scholar 

  95. Busch, S., Schwarz, U. & Kniep, R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatine composites. Chem. Mater. 13, 3260–3271 (2001).

    Article  CAS  Google Scholar 

  96. Yang, S. M., Sokolov, I., Coombs, N., Kresge, C. T. & Ozin, G. A. Formation of hollow helicoids in mesoporous silica: supramolecular origami. Adv. Mater. 11, 1427–1431 (1999).

    Article  CAS  Google Scholar 

  97. Yang, P. et al. Hierarchically ordered oxides. Science 282, 2244–2246 (1998).

    Article  CAS  Google Scholar 

  98. Bouchara, A., Soler Illia, G. J. A. A., Chane-Ching, J. Y. & Sanchez, C. Nanotectonic approach of the texturation of Ce202 based nanomaterials. Chem. Comm. 1234–1235 (2002).

  99. Li, M. & Mann, S. Emergent nanostructures: water induced mesoscale transformation of surfactant stabilized amorphous calcium carbonate nanoparticles in reverse microemulsions. Adv. Funct. Mater. 12, 773–779 (2002).

    Article  CAS  Google Scholar 

  100. Förster, S. & Antonietti, M. Amphiphilic block copolymers in structure controlled nanomaterial hybrids. Adv. Mater. 10, 195–217 (1998).

    Article  Google Scholar 

  101. Förster, S. & Plantenberg, T. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Edn 41, 689–714 (2002).

    Google Scholar 

  102. Hamley, I. W. Nanotechnology with soft materials. Angew. Chem. Int. Edn 42, 1692–1712 (2003).

    Article  CAS  Google Scholar 

  103. Finnefrock, A. C., Ulrich, R., Toombes, G. E. S, Gruner, S. M. & Wiesner, U. The Plumber's nightmare: A new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates. J. Am. Chem. Soc. 125, 13084–13093 (2003).

    Article  CAS  Google Scholar 

  104. Simon, P. F. W., Ulrich, R., Spiess, H. W. & Wiesner, U. Block copolymer-ceramic hybrid materials from organically modified ceramic precursors Chem. Mater. 13, 3464–3486 (2001).

    Article  CAS  Google Scholar 

  105. Thomas, A., Schlaad, H. & Antonietti, M. Replication of lyotropic block copolymer mesophases into porous silica by nanocasting: learning about finer details of polymer self assembly. Langmuir 19, 4455–4459 (2003).

    Article  CAS  Google Scholar 

  106. Faul, C. F., Antonietti, M., Hentze, H. P. & Smarsly, B. Solid state nanostructure of PAMAM dendrimer-fluorosurfactant complexes and nanoparticles synthesis within the ionic subphase. Colloid. Surf. 212, 115–131 (2003).

    Article  CAS  Google Scholar 

  107. Cölfen, H. Double hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers. Macromol. Rapid. Commun. 22, 219–252 (2001).

    Article  Google Scholar 

  108. Yu, S. H. & Cölfen, H. Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem. 14 (special issue on new developments on biorelated materials), 2124–2147 (2004).

    Article  CAS  Google Scholar 

  109. Li, M., Cölfen, H. & Mann, S. Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures. J. Mater. Chem. 14 (special issue on new developments on biorelated materials), 2269–2276 (2004).

    Article  CAS  Google Scholar 

  110. Yunfeng Lu, A. et al. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica composites. Nature 410, 913–917 (2001).

    Article  Google Scholar 

  111. Osada, Y. & Matsuda, A. Shape memory in hydrogels. Nature, 376, 219–220 (1995).

    Article  CAS  Google Scholar 

  112. Ueoka, Y., Gong, J. & Osada, Y. Chemomechanical polymer gel with fish-like motion. J. Intelligent Mater. Syst. and Struct. 8, 465–471 (1997).

    Article  CAS  Google Scholar 

  113. Auroy, P. in Biomimétisme et Matériaux Arago 25 (coord. Sanchez, C.) 457–459 (OFTA, Paris, 2001).

    Google Scholar 

  114. Smela, E., Inganas, O. & Lundstrom, I. Conducting polymers as artificial muscles: challenges and possibilities. J. Micromech. Microeng. 3, 203–205 (1993).

    Article  CAS  Google Scholar 

  115. McGrath, K. M. Probing material formation in the presence of organic and biological molecules. Adv. Mater. 13, 989–992 (2001).

    Article  CAS  Google Scholar 

  116. Jia, J., Zhou, X., Caruso, R. A. & Antonietti, M. Synthesis of microporous silica templated by gelatin. Chem. Lett. 33, 202–203 (2004).

    Article  Google Scholar 

  117. Cha, J. N., Stucky, G. D., Morse, D. E. & Deming, T. J. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289–292 (2000).

    Article  CAS  Google Scholar 

  118. Vauthey, S., Santoso, S., Haiyan Gong, Watson, N. & Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl Acad. Sci. 99, 5355–5360 (2002).

    Article  CAS  Google Scholar 

  119. Fogleman, E. A., Yount, W. C., Xu, J. & Craig, S. L. Modular, well-behaved reversible polymers from DNA based monomers. Angew. Chem. Int. Edn 41, 4026–4028 (2002).

    Article  CAS  Google Scholar 

  120. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  121. Faul, C. F. J. & Antonietti, M. Ionic self-assembly: facile synthesis of supramolecular materials. Adv. Mater. 15, 673–683 (2003).

    Article  CAS  Google Scholar 

  122. Shimizu, K., Cha, J. N., Stucky, G. D. & Morse, D. E. Silicatein & alpha Cathepsin L-like protein in sponge biosilica. Proc. Natl Acad. Sci. USA. 95, 6234–6238 (1998).

    Article  CAS  Google Scholar 

  123. Cha, J. N. et al. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365 (1999).

    Article  CAS  Google Scholar 

  124. Brott, L. L. et al. Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413, 291–293 (2001).

    Article  CAS  Google Scholar 

  125. Shen, X., Belcher, A., Hansma, P. K., Stucky, G. D. & Morse, D. E. Molecular cloning and characterisation of Lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 272, 32472–32481 (1997).

    Article  CAS  Google Scholar 

  126. Bico, J., Marzolin, C. & Quéré, D. Pearl drops. Europhysics Letters 47, 220–226 (1999).

    Article  CAS  Google Scholar 

  127. Vincent, J. in Biomimétisme et Matériaux Arago 25 (coord. Sanchez, C.) 313–324 (OFTA, Paris, 2001).

    Google Scholar 

  128. Vincent, J. Structural Biomaterials (Princeton Univ. Press, USA, 1990).

    Google Scholar 

  129. Simmons, A. H., Michal, C. A. & Jelinski, L. W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    Article  CAS  Google Scholar 

  130. Shin, H., Jo, S. & Mikos, A. G. Biomimetic materials for tissue engineering. Biomater, 24, 4353–4364 (2003).

    Article  CAS  Google Scholar 

  131. Li, S. T. in Biomaterials Principles and Applications (eds Park, J. B. & Bronzino, J. D.) Ch. 6, 117–139 (CRC press, New York, 2003).

    Google Scholar 

  132. Calvert, P. in Biomimétisme et Matériaux Arago 25 (coord. Sanchez, C.) 299–312 (OFTA, Paris, 2001).

    Google Scholar 

  133. Calvert, P. in Materials Science and Technology Vol. 17 (ed. Brook, R. J.) 51–82 (VCH,Wienheim, 1996).

    Google Scholar 

  134. Calvert, P. & Crockett, R. Chemical solid free-form fabrication : making shapes without molds. Chem. Mater. 9, 650–663 (1997).

    Article  CAS  Google Scholar 

  135. Naik, R. J., Brott, L. L., Clarson, S. J. & Stone, M. O. Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J. Nanosci. Nanotechnol. 2, 95–100 (2002).

    Article  CAS  Google Scholar 

  136. Braun, R., Sarikaya, M. & Schulten, K. Genetically engineered gold-binding polypeptides: Structure prediction and molecular dynamics. J. Biomat. Sci. 13, 747–757 (2002).

    Article  CAS  Google Scholar 

  137. Cagnol, F. et al. Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of a modulable steady state. J. Mater. Chem. 13, 61–66 (2002).

    Article  CAS  Google Scholar 

  138. Grosso, D. et al. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 14, 309–322 (2004).

    Article  CAS  Google Scholar 

  139. Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001).

    Article  CAS  Google Scholar 

  140. Petit, L., Sellière, E., Duguet, E., Ravaine, S. & Mingotaud, C. Dissymmetric silica nanospheres: a first step to difunctionalized nanomaterials J. Mater. Chem. 10, 253–254 (2000).

    Article  CAS  Google Scholar 

  141. Reculusa, S., Mingotaud, C., Duguet, E. & Ravaine, S. in The Dekker Encyclopedia of Nanoscience and Nanotechnology (ed. Dekker, M.) 943–953 (in the press).

  142. Giraud-Guille, M. M., Besseau, L. & Martin, R. Liquid crystalline assemblies of collagen in bone and in vitro systems. J. Biomech. 36, 1571–1579 (2003).

    Article  Google Scholar 

  143. Giraud-Guille, M. M. Liquid crystalline order of biopolymers in cuticles and bones. Microsc. Res. Technol. 27, 420–428 (1994).

    Article  CAS  Google Scholar 

  144. Crepaldi, E. L. et al. Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2 . J. Am. Chem. Soc. 125, 9770–9786 (2003).

    Article  CAS  Google Scholar 

  145. Llusar, M., Monros, G., Roux, C., Pozzo, L. J. & Sanchez, C. One-pot synthesis of phenyl- and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators. J. Mater. Chem. 13, 2505–2514 (2003).

    Article  CAS  Google Scholar 

  146. Bates, F. S. & Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 52, 32–38 (1999).

    Article  CAS  Google Scholar 

  147. Auschra, C. & Stadler, R. New ordered morphologies in ABC triblock copolymers. Macromolecules 26, 2171–2174 (1993).

    Article  CAS  Google Scholar 

  148. Stadler, R. et al. Morphology and thermodynamics of symmetric poly(A-block-B-block-C) triblock copolymers. Macromolecules. 28, 3080–3097 (1995).

    Article  CAS  Google Scholar 

  149. Breiner, U., Krappe, U., Thomas, E. L. & Stadler, R. Structural characterization of the “knitting pattern” in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) triblock copolymers. Macromolecules 31, 135–141 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Emmanuel Belamie and Thibaud Coradin are gratefully acknowledged for their critical reading of the manuscript and for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clément Sanchez, Hervé Arribart or Marie Madeleine Giraud Guille.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, C., Arribart, H. & Giraud Guille, M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater 4, 277–288 (2005). https://doi.org/10.1038/nmat1339

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing