Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Modelling the consequences of interactions between tumour cells

Abstract

Classical models of tumorigenesis assume that the mutations which cause tumours to grow act in a cell-autonomous fashion. This is not necessarily true. Sometimes tumour cells may adopt genetic strategies that boost their own replication and which also influence other cells in the tumour, whether directly or as a side-effect. Tumour growth as a whole might be enhanced or retarded. We have used mathematical models to study two non-autonomous strategies that tumour cells may use. First, we have considered the production by tumour cells of an angiogenesis growth factor that benefits both the cell from which it originates and neighbouring cells. Second, we have analysed a situation in which tumour cells produce autocrine-only or paracrine-only growth factors to prevent programmed cell death. In the angiogenesis model, stable genetic polymorphisms are likely to occur between cells producing and not producing the growth factor. In the programmed cell death model, cells with autocrine growth factor production can spread throughout the tumour. Production of paracrine-only growth factor is never selected because it is 'altruistic' (that is of no benefit to the cell that makes the growth factor), despite being potentially beneficial to tumour growth as a whole. No polymorphisms can occur in the programmed cell death model. Production of angiogenesis and other growth factors in tumours may be under stable genetic, rather than epigenetic, control, with implications for therapies aimed at such targets. Many of the mutations observed in tumours may have non-autonomous effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomlinson, I., Bodmer, W. Modelling the consequences of interactions between tumour cells. Br J Cancer 75, 157–160 (1997). https://doi.org/10.1038/bjc.1997.26

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1997.26

This article is cited by

Search

Quick links