Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Intrinsic bias and public rearrangements in the human immunoglobulin Vλ light chain repertoire

Abstract

The immunoglobulin lambda (IGL) repertoires from two unrelated human blood samples, three NOD-scid-IL2Rγnull mice engrafted with human hematopoietic stem cells and two pairs of monozygotic twin blood samples were determined by Roche 454 sequencing to generate a total of about 700 000 IGL sequences. We applied bioinformatic analysis to examine IGL repertoires wherein, surprisingly, 20% of CDR-L3 peptide sequences were ‘public’ (shared across individuals); moreover, full-length IGL protein sequences (VJ recombinants) were also present in the public domain. Subtle yet significant differences in CDR-L3 nontemplated nucleotide addition, IGL V-gene family usage, and amino-acid composition distinguished the public CDR-L3 groups from the private groups. These data suggest that public CDR-L3 intervals can arise by intrinsic genetic mechanisms irrespective of different B-cell developmental milieu (human versus humanized mouse). Furthermore, the occurrence of identical public IGL protein sequences indirectly suggest the positive selection (evolutionary, somatic or both) of particular IGL chains independent of the immunoglobulin heavy chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lai E, Wilson RK, Hood LE . Physical maps of the mouse and human immunoglobulin-like loci. Adv Immunol 1989; 46: 1–59.

    Article  CAS  Google Scholar 

  2. Rajewsky K . Clonal selection and learning in the antibody system. Nature 1996; 381: 751–758.

    Article  CAS  Google Scholar 

  3. Sanz I . Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J Immunol 1991; 147: 1720–1729.

    CAS  PubMed  Google Scholar 

  4. Tonegawa S . Somatic generation of antibody diversity. Nature 1983; 302: 575–581.

    Article  CAS  Google Scholar 

  5. Schroeder HW Jr, Cavacini L . Structure and function of immunoglobulins. J Allergy Clin Immunol 2010; 125 (2, Supplement 2): S41–S52.

    Article  Google Scholar 

  6. Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 2009; 1: 12ra23.

    Article  Google Scholar 

  7. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR et al. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci USA 2009; 106 (48): 20216–20221.

    Article  CAS  Google Scholar 

  8. Arnaout R, Lee W, Cahill P, Honan T, Sparrow T, Weiand M et al. High-resolution description of antibody heavy-chain repertoires in humans. PLoS One 2011; 6: e22365.

    Article  CAS  Google Scholar 

  9. Brezinschek H, Brezinschek R, Lipsky P . Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol 1995; 155: 190–202.

    CAS  PubMed  Google Scholar 

  10. Glanville J, Kuo TC, Von Büdingen H-C, Guey L, Berka J, Sundar PD et al. Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc Natl Acad Sci USA 2011; 108 (50): 20066–20071.

    Article  CAS  Google Scholar 

  11. Schelonka RL, Tanner J, Zhuang Y, Gartland GL, Zemlin M, Schroeder HW . Categorical selection of the antibody repertoire in splenic B cells. Eur J Immunol 2007; 37: 1010–1021.

    Article  CAS  Google Scholar 

  12. Suzuki I, Pfister L, Glas A, Nottenburg C, Milner EC . Representation of rearranged VH gene segments in the human adult antibody repertoire. J Immunol 1995; 154: 3902–3911.

    CAS  PubMed  Google Scholar 

  13. Yamada M, Wasserman R, Reichard BA, Shane S, Caton AJ, Rovera G . Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes. J Exp Med 1991; 173: 395–407.

    Article  CAS  Google Scholar 

  14. Boyd SD, Gaeta BA, Jackson KJ, Fire AZ, Marshall EL, Merker JD et al. Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements. J Immunol 2010; 184: 6986–6992.

    Article  CAS  Google Scholar 

  15. Cox JP, Tomlinson IM, Winter G . A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur J Immunol 1994; 24: 827–836.

    Article  CAS  Google Scholar 

  16. Foster SJ, Brezinschek HP, Brezinschek RI, Lipsky PE . Molecular mechanisms and selective influences that shape the kappa gene repertoire of IgM+ B cells. J Clin Invest 1997; 99: 1614–1627.

    Article  CAS  Google Scholar 

  17. Jackson KJL, Wang Y, Gaeta BA, Pomat W, Siba P, Rimmer J et al. Divergent human populations show extensive shared IGK rearrangements in peripheral blood B cells. Immunogenetics 2011; 64: 3–14.

    Article  Google Scholar 

  18. Ignatovich O, Tomlinson IM, Jones PT, Winter G . The creation of diversity in the human immunoglobulin Vλ repertoire. J Mol Biol 1997; 268: 69–77.

    Article  CAS  Google Scholar 

  19. Bridges SL . Frequent N addition and clonal relatedness among immunoglobulin lambda light chains expressed in rheumatoid arthritis synovia and PBL, and the influence of V lambda gene segment utilization on CDR3 length. Mol Med 1998; 4: 525–553.

    Article  CAS  Google Scholar 

  20. Ignatovich O, Tomlinson IM, Popov AV, Brüggemann M, Winter G . Dominance of intrinsic genetic factors in shaping the human immunoglobulin Vλ repertoire. J Mol Biol 1999; 294: 457–465.

    Article  CAS  Google Scholar 

  21. Farner NL, Dörner T, Lipsky PE . Molecular mechanisms and selection influence the generation of the human VλJλ repertoire. J Immunol 1999; 162: 2137–2145.

    CAS  PubMed  Google Scholar 

  22. Lee J, Monson NL, Lipsky PE . The VλJλ repertoire in human fetal spleen: evidence for positive selection and extensive receptor editing. J Immunol 2000; 165: 6322–6333.

    Article  CAS  Google Scholar 

  23. Richl P, Stern U, Lipsky PE, Girschick HJ . The lambda gene immunoglobulin repertoire of human neonatal B cells. Mol Immunol 2008; 45: 320–327.

    Article  CAS  Google Scholar 

  24. Frippiat JP, Williams SC, Tomlinson IM, Cook GP, Cherif D, Le Paslier D et al. Organization of the human immunoglobulin lambda light-chain locus on chromosome 22q11.2. Hum Mol Genet 1995; 4: 983–991.

    Article  CAS  Google Scholar 

  25. Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Schmeits JL et al. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res 1997; 7: 250–261.

    Article  CAS  Google Scholar 

  26. Kawasaki K, Minoshima S, Schooler K, Kudoh J, Asakawa S, De Jong PJ et al. The organization of the human immunoglobulin lambda gene locus. Genome Res 1995; 5: 125–135.

    Article  CAS  Google Scholar 

  27. Williams SC, Frippiat J-P, Tomlinson IM, Ignatovich O, Lefranc M-P, Winter G . Sequence and evolution of the human germline Vλ repertoire. J Mol Biol 1996; 264: 220–232.

    Article  CAS  Google Scholar 

  28. Saada R, Weinberger M, Shahaf G, Mehr R . Models for antigen receptor gene rearrangement: CDR3 length. Immunol Cell Biol 2007; 85: 323–332.

    Article  CAS  Google Scholar 

  29. Ippolito GC, Hoi KH, Reddy ST, Carroll SM, Ge X, Rogosch T et al. Antibody repertoires in humanized NOD-scid-IL2Rγnull mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse. PLoS One 2012; 7: 4 e35497.

    Google Scholar 

  30. Padlan EA . Anatomy of the antibody molecule. Mol Immunol 1994; 31: 169–217.

    Article  CAS  Google Scholar 

  31. Wilson IA, Stanfield RL . Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol 1994; 4: 857–867.

    Article  CAS  Google Scholar 

  32. Chothia C, Lesk AM . Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 1987; 196: 901–917.

    Article  CAS  Google Scholar 

  33. Kuroda D, Shirai H, Kobori M, Nakamura H . Systematic classification of CDR-L3 in antibodies: implications of the light chain subtypes and the VL–VH interface. Proteins Structure Function Bioinformatics 2009; 75: 139–146.

    Article  CAS  Google Scholar 

  34. Schoettler N, Ni D, Weigert M . B cell receptor light chain repertoires show signs of selection with differences between groups of healthy individuals and SLE patients. Mol Immunol 2012; 51: 273–282.

    Article  CAS  Google Scholar 

  35. DeKosky BJ, Ippolito GC, Deschner RP, Lavinder JJ, Wine Y, Rawlings BM et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotech 2013; 31: 166–169.

    Article  CAS  Google Scholar 

  36. Reddy ST, Ge X, Miklos AE, Hughes RA, Kang SH, Hoi KH et al. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotech 2010; 28: 965–969.

    Article  CAS  Google Scholar 

  37. Brochet X, Lefranc M-P, Giudicelli V . IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 2008; 36 (Web Server issue): W503–W508.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Jaime O’Neal and Chhaya Das for their technical assistance. We also acknowledge Arvind Rajpal, Tracy Kuo and Marina Sirota for providing the Rinat–Pfizer twin sequences. We are grateful to George Georgiou for his insightful commentary and general support and collegiality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C Ippolito.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoi, K., Ippolito, G. Intrinsic bias and public rearrangements in the human immunoglobulin Vλ light chain repertoire. Genes Immun 14, 271–276 (2013). https://doi.org/10.1038/gene.2013.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.10

Keywords

This article is cited by

Search

Quick links