Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Obese adults have visual attention bias for food cue images: evidence for altered reward system function

Abstract

Background:

The major aim of this study was to investigate whether the motivational salience of food cues (as reflected by their attention-grabbing properties) differs between obese and normal-weight subjects in a manner consistent with altered reward system function in obesity.

Methodology/Principal Findings:

A total of 18 obese and 18 normal-weight, otherwise healthy, adult women between the ages of 18 and 35 participated in an eye-tracking paradigm in combination with a visual probe task. Eye movements and reaction time to food and non-food images were recorded during both fasted and fed conditions in a counterbalanced design. Eating behavior and hunger level were assessed by self-report measures. Obese individuals had higher scores than normal-weight individuals on self-report measures of responsiveness to external food cues and vulnerability to disruptions in control of eating behavior. Both obese and normal-weight individuals demonstrated increased gaze duration for food compared to non-food images in the fasted condition. In the fed condition, however, despite reduced hunger in both groups, obese individuals maintained the increased attention to food images, whereas normal-weight individuals had similar gaze duration for food and non-food images. Additionally, obese individuals had preferential orienting toward food images at the onset of each image. Obese and normal-weight individuals did not differ in reaction time measures in the fasted or fed condition.

Conclusions/Significance:

Food cue incentive salience is elevated equally in normal-weight and obese individuals during fasting. Obese individuals retain incentive salience for food cues despite feeding and decreased self-report of hunger. Sensitization to food cues in the environment and their dysregulation in obese individuals may play a role in the development and/or maintenance of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Denton D . The Primordial Emotions: The Dawning of Consciousness. Oxford University Press: New York, NY, 2005.

    Google Scholar 

  2. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM . Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006; 295: 1549–1555.

    Article  CAS  PubMed  Google Scholar 

  3. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB . Years of life lost due to obesity. JAMA 2003; 289: 187–193.

    Article  PubMed  Google Scholar 

  4. Kelley AE, Berridge KC . The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 2002; 22: 3306–3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wise RA . Drug-activation of brain reward pathways. Drug Alcohol Depend 1998; 51: 13–22.

    Article  CAS  PubMed  Google Scholar 

  6. Rada P, Avena NM, Hoebel BG . Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 2005; 134: 737–744.

    Article  CAS  PubMed  Google Scholar 

  7. Avena NM, Rada P, Hoebel BG . Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2008; 32: 20–39.

    Article  CAS  PubMed  Google Scholar 

  8. Spangler R, Wittkowski KM, Goddard NL, Avena NM, Hoebel BG, Leibowitz SF . Opiate-like effects of sugar on gene expression in reward areas of the rat brain. Brain Res Mol Brain Res 2004; 124: 134–142.

    Article  CAS  PubMed  Google Scholar 

  9. Kelley AE, Bakshi VP, Fleming S, Holahan MR . A pharmacological analysis of the substrates underlying conditioned feeding induced by repeated opioid stimulation of the nucleus accumbens. Neuropsychopharmacology 2000; 23: 455–467.

    Article  CAS  PubMed  Google Scholar 

  10. Avena NM, Long KA, Hoebel BG . Sugar-dependent rats show enhanced responding for sugar after abstinence: evidence of a sugar deprivation effect. Physiol Behav 2005; 84: 359–362.

    Article  CAS  PubMed  Google Scholar 

  11. South T, Huang XF . High-fat diet exposure increases dopamine D2 receptor and decreases dopamine transporter receptor binding density in the nucleus accumbens and caudate putamen of mice. Neurochem Res 2008; 33: 598–605.

    Article  CAS  PubMed  Google Scholar 

  12. Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 2008; 122: 1257–1263.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang XF, Yu Y, Zavitsanou K, Han M, Storlien L . Differential expression of dopamine D2 and D4 receptor and tyrosine hydroxylase mRNA in mice prone, or resistant, to chronic high-fat diet-induced obesity. Brain Res Mol Brain Res 2005; 135: 150–161.

    Article  CAS  PubMed  Google Scholar 

  14. Robinson TE, Berridge KC . Addiction. Annu Rev Psychol 2003; 54: 25–53.

    Article  PubMed  Google Scholar 

  15. Robinson TE, Berridge KC . Incentive-sensitization and addiction. Addiction 2001; 96: 103–114.

    Article  CAS  PubMed  Google Scholar 

  16. Schultz W, Dayan P, Montague PR . A neural substrate of prediction and reward. Science 1997; 275: 1593–1599.

    Article  CAS  PubMed  Google Scholar 

  17. Wickelgren I . Getting the brain's attention. Science 1997; 278: 35–37.

    Article  CAS  PubMed  Google Scholar 

  18. Franken IH . Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 563–579.

    Article  PubMed  Google Scholar 

  19. Carter BL, Tiffany ST . Cue-reactivity and the future of addiction research. Addiction 1999; 94: 349–351.

    Article  CAS  PubMed  Google Scholar 

  20. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 2000; 157: 1789–1798.

    Article  CAS  PubMed  Google Scholar 

  21. Bradley BP, Mogg K, Wright T, Field M . Attentional bias in drug dependence: vigilance for cigarette-related cues in smokers. Psychol Addict Behav 2003; 17: 66–72.

    Article  PubMed  Google Scholar 

  22. Waters AJ, Shiffman S, Bradley BP, Mogg K . Attentional shifts to smoking cues in smokers. Addiction 2003; 98: 1409–1417.

    Article  PubMed  Google Scholar 

  23. Field M, Mogg K, Zetteler J, Bradley BP . Attentional biases for alcohol cues in heavy and light social drinkers: the roles of initial orienting and maintained attention. Psychopharmacology (Berl) 2004; 176: 88–93.

    Article  CAS  Google Scholar 

  24. Townshend JM, Duka T . Attentional bias associated with alcohol cues: differences between heavy and occasional social drinkers. Psychopharmacology (Berl) 2001; 157: 67–74.

    Article  CAS  Google Scholar 

  25. Yeomans MR, Javaherian S, Tovey HM, Stafford LD . Attentional bias for caffeine-related stimuli in high but not moderate or non-caffeine consumers. Psychopharmacology (Berl) 2005; 181: 477–485.

    Article  CAS  Google Scholar 

  26. Lubman DI, Peters LA, Mogg K, Bradley BP, Deakin JF . Attentional bias for drug cues in opiate dependence. Psychol Med 2000; 30: 169–175.

    Article  CAS  PubMed  Google Scholar 

  27. Field M, Mogg K, Bradley BP . Cognitive bias and drug craving in recreational cannabis users. Drug Alcohol Depend 2004; 74: 105–111.

    Article  PubMed  Google Scholar 

  28. Henderson JM, Hollingworth A . Eye movements during scene viewing: an overview. In: Underwood G (ed). Eye Guidance in Reading and Scene Perception. Elsevier Science Ltd: Oxford, UK, 1998, pp 269–293.

    Chapter  Google Scholar 

  29. Bradley BP, Garner M, Hudson L, Mogg K . Influence of negative affect on selective attention to smoking-related cues and urge to smoke in cigarette smokers. Behav Pharmacol 2007; 18: 255–263.

    Article  PubMed  Google Scholar 

  30. Mogg K, Field M, Bradley BP . Attentional and approach biases for smoking cues in smokers: an investigation of competing theoretical views of addiction. Psychopharmacology (Berl) 2005; 180: 333–341.

    Article  CAS  Google Scholar 

  31. Field M, Mogg K, Bradley BP . Eye movements to smoking-related cues: effects of nicotine deprivation. Psychopharmacology (Berl) 2004; 173: 116–123.

    Article  CAS  Google Scholar 

  32. Mogg K, Bradley BP, Field M, De HJ . Eye movements to smoking-related pictures in smokers: relationship between attentional biases and implicit and explicit measures of stimulus valence. Addiction 2003; 98: 825–836.

    Article  PubMed  Google Scholar 

  33. Field M, Eastwood B, Bradley BP, Mogg K . Selective processing of cannabis cues in regular cannabis users. Drug Alcohol Depend 2006; 85: 75–82.

    Article  PubMed  Google Scholar 

  34. Leland DS, Pineda JA . Effects of food-related stimuli on visual spatial attention in fasting and nonfasting normal subjects: Behavior and electrophysiology. Clin Neurophysiol 2006; 117: 67–84.

    Article  CAS  PubMed  Google Scholar 

  35. Placanica JL, Faunce GJ, Soames Job RF . The effect of fasting on attentional biases for food and body shape/weight words in high and low Eating Disorder Inventory scorers. Int J Eat Disord 2002; 32: 79–90.

    Article  PubMed  Google Scholar 

  36. Mogg K, Bradley BP, Hyare H, Lee S . Selective attention to food-related stimuli in hunger: are attentional biases specific to emotional and psychopathological states, or are they also found in normal drive states? Behav Res Ther 1998; 36: 227–237.

    Article  CAS  PubMed  Google Scholar 

  37. Braet C, Crombez G . Cognitive interference due to food cues in childhood obesity. J Clin Child Adolesc Psychol 2003; 32: 32–39.

    Article  PubMed  Google Scholar 

  38. Soetens B, Braet C . Information processing of food cues in overweight and normal weight adolescents. Br J Health Psychol 2007; 12 (Part 2): 285–304.

    Article  PubMed  Google Scholar 

  39. Nijs IM, Franken IH, Muris P . Food cue-elicited brain potentials in obese and healthy-weight individuals. Eat Behav 2008; 9: 462–470.

    Article  PubMed  Google Scholar 

  40. Cloninger CR, Przybeck TR, Syrakic DM, Wetzel RD . The Temperament and Character Inventory (TCI): A Guide to Its Development and Use. Center for Psychobiology of Personality, Washington University: St Louis, MO, 1994.

    Google Scholar 

  41. Carver CS, White TL . Behavioral-inhibition, behavioral activation, and affective responses to impending reward and punishment—the Bis Bas scales. J Pers Soc Psychol 1994; 67: 319–333.

    Article  Google Scholar 

  42. Stunkard AJ, Messick S . The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 1985; 29: 71–83.

    Article  CAS  PubMed  Google Scholar 

  43. van Strien T, Frijters JER, Bergers GPA, Defares PB . The dutch eating behavior questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord 1986; 5: 295–315.

    Article  Google Scholar 

  44. Beaver JD, Lawrence AD, van DJ, Davis MH, Woods A, Calder AJ . Individual differences in reward drive predict neural responses to images of food. J Neurosci 2006; 26: 5160–5166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lindroos AK, Lissner L, Mathiassen ME, Karlsson J, Sullivan M, Bengtsson C et al. Dietary intake in relation to restrained eating, disinhibition, and hunger in obese and nonobese Swedish women. Obes Res 1997; 5: 175–182.

    Article  CAS  PubMed  Google Scholar 

  46. Provencher V, Drapeau V, Tremblay A, Despres JP, Lemieux S . Eating behaviors and indexes of body composition in men and women from the Quebec family study. Obes Res 2003; 11: 783–792.

    Article  PubMed  Google Scholar 

  47. Gerra G, Zaimovic A, Timpano M, Zambelli U, Begarani M, Marzocchi GF et al. Neuroendocrine correlates of temperament traits in abstinent opiate addicts. J Subst Abuse 2000; 11: 337–354.

    Article  CAS  PubMed  Google Scholar 

  48. NIH. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. NIH: Bethesda, MD, 1998.

  49. Grand S . Color-word interference. II. An investigation of the role of vocal conflict and hunger in associative priming. J Exp Psychol 1968; 77: 31–40.

    Article  CAS  PubMed  Google Scholar 

  50. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M et al. Differential brain responses to satiation in obese and lean men. Diabetes 2000; 49: 838–846.

    Article  CAS  PubMed  Google Scholar 

  51. Carroll JF, Kaiser KA, Franks SF, Deere C, Caffrey JL . Influence of BMI and gender on postprandial hormone responses. Obesity (Silver Spring) 2007; 15: 2974–2983.

    Article  CAS  Google Scholar 

  52. Davis C, Fox J . Sensitivity to reward and body mass index (BMI): evidence for a non-linear relationship. Appetite 2008; 50: 43–49.

    Article  PubMed  Google Scholar 

  53. Kampov-Polevoy AB, Eick C, Boland G, Khalitov E, Crews FT . Sweet liking, novelty seeking, and gender predict alcoholic status. Alcohol Clin Exp Res 2004; 28: 1291–1298.

    Article  PubMed  Google Scholar 

  54. Hale RL, Whiteman S, Muehl K, Faynberg E . Tridimensional personality traits of college student marijuana users. Psychol Rep 2003; 92: 661–666.

    Article  PubMed  Google Scholar 

  55. Zald DH, Cowan RL, Riccardi P, Baldwin RM, Ansari MS, Li R et al. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J Neurosci 2008; 28: 14372–14378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang GJ, Volkow ND, Felder C, Fowler JS, Levy AV, Pappas NR et al. Enhanced resting activity of the oral somatosensory cortex in obese subjects. Neuroreport 2002; 13: 1151–1155.

    Article  PubMed  Google Scholar 

  57. Thanos PK, Michaelides M, Piyis YK, Wang GJ, Volkow ND . Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography. Synapse 2008; 62: 50–61.

    Article  CAS  PubMed  Google Scholar 

  58. Geiger BM, Behr GG, Frank LE, Caldera-Siu AD, Beinfeld MC, Kokkotou EG et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J 2008; 22: 2740–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Volkow ND, Wise RA . How can drug addiction help us understand obesity? Nat Neurosci 2005; 8: 555–560.

    Article  CAS  PubMed  Google Scholar 

  60. Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M . Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 2002; 76: 365–377.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their contributions to improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellanos, E., Charboneau, E., Dietrich, M. et al. Obese adults have visual attention bias for food cue images: evidence for altered reward system function. Int J Obes 33, 1063–1073 (2009). https://doi.org/10.1038/ijo.2009.138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.138

Keywords

This article is cited by

Search

Quick links