Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma

Subjects

Abstract

Aberrant DNA hypermethylation contributes to myelomagenesis by silencing tumor-suppressor genes. Recently, a few reports have suggested that a novel class of small non-coding RNAs, called Piwi-interacting RNAs (piRNAs), may be involved in the epigenetic regulation of cancer. In this study, for the first time we provided evidence that the expression of piRNA-823 was upregulated in multiple myeloma (MM) patients and cell lines, and positively correlated with clinical stage. Silencing piRNA-823 in MM cells induced deregulation of cell cycle regulators and apoptosis-related proteins expression, accompanied by inhibition of tumorigenicity in vitro and in vivo. Moreover, piRNA-823 was directly relevant to de novo DNA methyltransferases, DNMT3A and 3B, in primary CD138+ MM cells. The inhibited expression of piRNA-823 in MM cells resulted in marked reduction of DNMT3A and 3B at both mRNA and protein levels, which in turn led to decrease in global DNA methylation and reexpression of methylation-silenced tumor suppressor, p16INK4A. In addition, piRNA-823 abrogation in MM cells induced reduction of vascular endothelial growth factor secretion, with consequent decreased proangiogenic activity. Altogether, these data support an oncogenic role of piRNA-823 in the biology of MM, providing a rational for the development of piRNA-targeted therapeutic strategies in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Morgan GJ, Walker BA, Davies FE . The genetic architecture of multiple myeloma. Nat Rev Cancer 2012; 12: 335–348.

    Article  CAS  PubMed  Google Scholar 

  2. Chng WJ, Glebov O, Bergsagel PL, Kuehl WM . Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol 2007; 20: 571–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chim CS, Liang R, Leung MH, Kwong YL . Aberrant gene methylation implicated in the progression of monoclonal gammopathy of undetermined significance to multiple myeloma. J Clin Pathol 2007; 60: 104–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galm O, Wilop S, Reichelt J, Jost E, Gehbauer G, Herman JG et al. DNA methylation changes in multiple myeloma. Leukemia 2004; 18: 1687–1692.

    Article  CAS  PubMed  Google Scholar 

  5. Walker BA, Wardell CP, Chiecchio L, Smith EM, Boyd KD, Neri A et al. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 2011; 117: 553–562.

    Article  CAS  PubMed  Google Scholar 

  6. Jones PA, Baylin SB . The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–428.

    Article  CAS  PubMed  Google Scholar 

  7. Heller G, Schmidt WM, Ziegler B, Holzer S, Mullauer L, Bilban M et al. Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Res 2008; 68: 44–54.

    Article  CAS  PubMed  Google Scholar 

  8. Kaiser MF, Johnson DC, Wu P, Walker BA, Brioli A, Mirabella F et al. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood 2013; 122: 219–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amodio N, Leotta M, Bellizzi D, Di Martino MT, D'Aquila P, Lionetti M et al. DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget 2012; 3: 1246–1258.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou H, Hu H, Lai M . Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell 2010; 102: 645–655.

    Article  CAS  PubMed  Google Scholar 

  11. Esteller M . Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861–874.

    Article  CAS  PubMed  Google Scholar 

  12. Wong KY, Yim RL, So CC, Jin DY, Liang R, Chim CS . Epigenetic inactivation of the MIR34B/C in multiple myeloma. Blood 2011; 118: 5901–5904.

    Article  CAS  PubMed  Google Scholar 

  13. Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010; 18: 367–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG et al. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 2010; 31: 745–750.

    Article  CAS  PubMed  Google Scholar 

  15. Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 2008; 31: 785–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aravin AA, Bourc'his D . Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 2008; 22: 970–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 2011; 332: 848–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grivna ST, Beyret E, Wang Z, Lin H . A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 2006; 20: 1709–1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Girard A, Sachidanandam R, Hannon GJ, Carmell MA . A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006; 442: 199–202.

    Article  PubMed  Google Scholar 

  20. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006; 442: 203–207.

    Article  CAS  PubMed  Google Scholar 

  21. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 2008; 22: 908–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ . Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 2007; 316: 744–747.

    Article  CAS  PubMed  Google Scholar 

  23. Siddiqi S, Terry M, Matushansky I . Hiwi mediated tumorigenesis is associated with DNA hypermethylation. PLoS One 2012; 7: e33711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siddiqi S, Matushansky I . Piwis and piwi-interacting RNAs in the epigenetics of cancer. J Cell Biochem 2012; 113: 373–380.

    Article  CAS  PubMed  Google Scholar 

  25. Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C . Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 2010; 330: 1824–1827.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z, Zhou H et al. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta 2011; 412: 1621–1625.

    Article  CAS  PubMed  Google Scholar 

  27. Cui L, Lou Y, Zhang X, Zhou H, Deng H, Song H et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 2011; 44: 1050–1057.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z et al. piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 2012; 315: 12–17.

    Article  CAS  PubMed  Google Scholar 

  29. Hu Y, Wang YD, Guo T, Wei WN, Sun CY, Zhang L et al. Identification of brain-derived neurotrophic factor as a novel angiogenic protein in multiple myeloma. Cancer Genet Cytogenet 2007; 178: 1–10.

    Article  CAS  PubMed  Google Scholar 

  30. Huang G, Hu H, Xue X, Shen S, Gao E, Guo G et al. Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 2013; 15: 563–568.

    Article  CAS  PubMed  Google Scholar 

  31. Law PT, Qin H, Ching AK, Lai KP, Co NN, He M et al. Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol 2013; 58: 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  32. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lamorte S, Ferrero S, Aschero S, Monitillo L, Bussolati B, Omede P et al. Syndecan-1 promotes the angiogenic phenotype of multiple myeloma endothelial cells. Leukemia 2012; 26: 1081–1090.

    Article  CAS  PubMed  Google Scholar 

  34. Chim CS, Kwong YL, Liang R . Gene hypermethylation in multiple myeloma: lessons from a cancer pathway approach. Clin Lymphoma Myeloma 2008; 8: 331–339.

    Article  CAS  PubMed  Google Scholar 

  35. Park G, Kang SH, Lee JH, Suh C, Kim M, Park SM et al. Concurrent p16 methylation pattern as an adverse prognostic factor in multiple myeloma: a methylation-specific polymerase chain reaction study using two different primer sets. Ann Hematol 2011; 90: 73–79.

    Article  PubMed  Google Scholar 

  36. Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V, Di Raimondo F et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 2003; 88: 176–185.

    CAS  PubMed  Google Scholar 

  37. Ria R, Vacca A, Russo F, Cirulli T, Massaia M, Tosi P et al. A VEGF-dependent autocrine loop mediates proliferation and capillarogenesis in bone marrow endothelial cells of patients with multiple myeloma. Thromb Haemost 2004; 92: 1438–1445.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Ren Y, Xu H, Pang D, Duan C, Liu C . The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol 2013; 22: 217–223.

    Article  PubMed  Google Scholar 

  39. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23: 3412–3420.

    Article  PubMed  Google Scholar 

  40. Wu P, Agnelli L, Walker BA, Todoerti K, Lionetti M, Johnson DC et al. Improved risk stratification in myeloma using a microRNA-based classifier. Br J Haematol 2013; 162: 348–359.

    Article  CAS  PubMed  Google Scholar 

  41. Chi J, Ballabio E, Chen XH, Kusec R, Taylor S, Hay D et al. MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct 2011; 6: 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Liu Y, Shen X, Zhang X, Chen X, Yang C et al. The PIWI protein acts as a predictive marker for human gastric cancer. Int J Clin Exp Pathol 2012; 5: 315–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. He W, Wang Z, Wang Q, Fan Q, Shou C, Wang J et al. Expression of HIWI in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. BMC Cancer 2009; 9: 426.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Grochola LF, Greither T, Taubert H, Moller P, Knippschild U, Udelnow A et al. The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas: expression and risk of tumour-related death. Br J Cancer 2008; 99: 1083–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee JH, Schutte D, Wulf G, Fuzesi L, Radzun HJ, Schweyer S et al. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum Mol Genet 2006; 15: 201–211.

    Article  CAS  PubMed  Google Scholar 

  46. Lee JH, Jung C, Javadian-Elyaderani P, Schweyer S, Schutte D, Shoukier M et al. Pathways of proliferation and antiapoptosis driven in breast cancer stem cells by stem cell protein piwil2. Cancer Res 2010; 70: 4569–4579.

    Article  CAS  PubMed  Google Scholar 

  47. Chim CS, Fung TK, Liang R . Disruption of INK4/CDK/Rb cell cycle pathway by gene hypermethylation in multiple myeloma and MGUS. Leukemia 2003; 17: 2533–2535.

    Article  CAS  PubMed  Google Scholar 

  48. Kramer A, Schultheis B, Bergmann J, Willer A, Hegenbart U, Ho AD et al. Alterations of the cyclin D1/pRb/p16(INK4A) pathway in multiple myeloma. Leukemia 2002; 16: 1844–1851.

    Article  CAS  PubMed  Google Scholar 

  49. Chim CS, Liang R, Fung TK, Kwong YL . Infrequent epigenetic dysregulation of CIP/KIP family of cyclin-dependent kinase inhibitors in multiple myeloma. Leukemia 2005; 19: 2352–2355.

    Article  CAS  PubMed  Google Scholar 

  50. Vacca A, Ribatti D, Roccaro AM, Frigeri A, Dammacco F . Bone marrow angiogenesis in patients with active multiple myeloma. Semin Oncol 2001; 28: 543–550.

    Article  CAS  PubMed  Google Scholar 

  51. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000; 6: 3111–3116.

    CAS  PubMed  Google Scholar 

  52. Zhu D, Hunter SB, Vertino PM, Van Meir EG . Overexpression of MBD2 in glioblastoma maintains epigenetic silencing and inhibits the antiangiogenic function of the tumor suppressor gene BAI1. Cancer Res 2011; 71: 5859–5870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hellebrekers DM, Jair KW, Vire E, Eguchi S, Hoebers NT, Fraga MF et al. Angiostatic activity of DNA methyltransferase inhibitors. Mol Cancer Ther 2006; 5: 467–475.

    Article  CAS  PubMed  Google Scholar 

  54. Claudio PP, Stiegler P, Howard CM, Bellan C, Minimo C, Tosi GM et al. RB2/p130 gene-enhanced expression down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in vivo. Cancer Res 2001; 61: 462–468.

    CAS  PubMed  Google Scholar 

  55. Takeuchi H, Ozawa S, Shih CH, Ando N, Kitagawa Y, Ueda M et al. Loss of p16INK4a expression is associated with vascular endothelial growth factor expression in squamous cell carcinoma of the esophagus. Int J Cancer 2004; 109: 483–490.

    Article  CAS  PubMed  Google Scholar 

  56. Schulz P, Scholz A, Rexin A, Hauff P, Schirner M, Wiedenmann B et al. Inducible re-expression of p16 in an orthotopic mouse model of pancreatic cancer inhibits lymphangiogenesis and lymphatic metastasis. Br J Cancer 2008; 99: 110–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gibson SL, Dai CY, Lee HW, DePinho RA, Gee MS, Lee WM et al. Inhibition of colon tumor progression and angiogenesis by the Ink4a/Arf locus. Cancer Res 2003; 63: 742–746.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Funds for Distinguished Young Scholar (no. 30825018, for YH); Important New Drug Discovery (no. 2011ZX09302-002, for YH); Scientific Research Foundation for the Returned Overseas Chinese Scholars (no. 02.07.060246, for Q-LW); National Natural Sciences Foundation of P.R.China (no. 30500686, for Q-LW) and National Natural Sciences Foundation of P.R.China (no. 81272625, for C-YS). We thank Professor Jun-Ming Guo from Ningbo University School of Medicine for proving valuable suggestions about qRT-PCR analysis of piRNA-823, as well as Shun-Chang Zhou from Department of Experimental Animals, Tongji Medical College, Huazhong University of Science and Technology and members of our laboratories for stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Hu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Wu, QL., Sun, CY. et al. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 29, 196–206 (2015). https://doi.org/10.1038/leu.2014.135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.135

This article is cited by

Search

Quick links