Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using DNA to program the self-assembly of colloidal nanoparticles and microparticles

Abstract

DNA is not just the stuff of our genetic code; it is also a means to design self-assembling materials. Grafting DNA onto nano- and microparticles can, in principle, ‘program’ them with information that tells them exactly how to self-assemble. Although fully programmable assembly has not yet been realized, the groundwork has been laid: with an understanding of how specific interparticle attractions arise from DNA hybridization, we can now make systems that reliably assemble in and out of equilibrium. We discuss these advances, and the design rules that will allow us to control — and ultimately program — the assembly of new materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of DNA-mediated self-assembly.
Figure 2: DNA hybridization induces an effective interaction potential between DNA-grafted particles.
Figure 3: Equilibrium phase behaviour of simple systems is similar at the nanoscale and the microscale.
Figure 4: Non-equilibrium routes to assembly produce colloidal clusters and bicontinuous gels.
Figure 5: Forms of information for programming self-assembly.

Similar content being viewed by others

References

  1. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  Google Scholar 

  2. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).

    CAS  Google Scholar 

  3. Hernandez-Garcia, A. et al. Design and self-assembly of simple coat proteins for artificial viruses. Nat. Nanotechnol. 9, 698–702 (2014).

    CAS  Google Scholar 

  4. Bita, I. et al. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 321, 939–943 (2008).

    CAS  Google Scholar 

  5. Ruiz, R. et al. Density multiplication and improved lithography by directed block copolymer assembly. Science 321, 936–939 (2008).

    CAS  Google Scholar 

  6. Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).

    CAS  Google Scholar 

  7. Hu, H., Gopinadhan, M. & Osuji, C. O. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 10, 3867–3889 (2014).

    CAS  Google Scholar 

  8. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Google Scholar 

  9. Sacanna, S., Pine, D. J. & Yi, G.-R. Engineering shape: the novel geometries of colloidal self-assembly. Soft Matter 9, 8096–8106 (2013).

    CAS  Google Scholar 

  10. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  Google Scholar 

  11. Seeman, N. C. DNA nanotechnology: novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27, 225–248 (1998).

    CAS  Google Scholar 

  12. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982). The first paper to discuss using DNA oligonucleotides as building blocks in 3D self-assembly.

    CAS  Google Scholar 

  13. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  Google Scholar 

  14. Liu, D., Park, S. H., Reif, J. H. & LaBean, T. H. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl Acad. Sci. USA 101, 717–722 (2004).

    CAS  Google Scholar 

  15. Rothemund, P. W. K. et al. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352 (2004).

    CAS  Google Scholar 

  16. Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    CAS  Google Scholar 

  17. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012). Experimental study showing that multiple copies of prescribed 3D structures can be self-assembled from a ‘soup’ of DNA building blocks with maximally specific interactions; much current research is aimed at duplicating this result with nano- and microparticles.

    CAS  Google Scholar 

  18. Ke, Y. et al. DNA brick crystals with prescribed depths. Nat. Chem. 6, 994–1002 (2014).

    CAS  Google Scholar 

  19. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Google Scholar 

  20. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    CAS  Google Scholar 

  21. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  Google Scholar 

  22. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    CAS  Google Scholar 

  23. Han, D. et al. DNA gridiron nanostructures based on four-arm junctions. Science 339, 1412–1415 (2013).

    CAS  Google Scholar 

  24. Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    CAS  Google Scholar 

  25. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    CAS  Google Scholar 

  26. Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

    CAS  Google Scholar 

  27. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Google Scholar 

  28. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996). References 27 and 28, published concurrently, launched the field of DNA-grafted colloidal particles: reference 27 describes the first reversible DNA-mediated self-assembly of nanoparticles; reference 28 describes the first attempts to program self-assembly of finite structures using DNA.

    CAS  Google Scholar 

  29. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Google Scholar 

  30. Winfree, E. Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments. J. Biomol. Struct. Dyn. 17, 263–270 (2000).

    Google Scholar 

  31. Seeman, N. C. & Lukeman, P. S. Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Rep. Prog. Phys. 68, 237–270 (2005).

    CAS  Google Scholar 

  32. Geerts, N. & Eiser, E. DNA-functionalized colloids: physical properties and applications. Soft Matter 6, 4647–4660 (2010).

    CAS  Google Scholar 

  33. Zhang, X., Wang, R. & Xue, G. Programming macro-materials from DNA-directed self-assembly. Soft Matter 11, 1862–1870 (2015).

    CAS  Google Scholar 

  34. Theodorakis, P. E., Fytas, N. G., Kahl, G. & Dellago, C. Self-assembly of DNA-functionalized colloids. Condens. Matter Phys. 18, 22801 (2015).

    Google Scholar 

  35. Jones, M. R. & Mirkin, C. A. Materials science: self-assembly gets new direction. Nature 491, 42–43 (2012).

    CAS  Google Scholar 

  36. Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006).

    CAS  Google Scholar 

  37. Valignat, M.-P., Theodoly, O., Crocker, J. C., Russel, W. B. & Chaikin, P. M. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl Acad. Sci. USA 102, 4225–4229 (2005).

    CAS  Google Scholar 

  38. Dreyfus, R. et al. Simple quantitative model for the reversible association of DNA coated colloids. Phys. Rev. Lett. 102, 048301 (2009).

    Google Scholar 

  39. Kim, A. J., Manoharan, V. N. & Crocker, J. C. Swelling-based method for preparing stable, functionalized polymer colloids. J. Am. Chem. Soc. 127, 1592–1593 (2005).

    CAS  Google Scholar 

  40. Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    CAS  Google Scholar 

  41. Wang, Y. et al. Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015).

    CAS  Google Scholar 

  42. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008). Along with reference 72, which was published concurrently, this paper describes the first successful crystallization of DNA-grafted nanoparticles, demonstrating that equilibrium assembly of nanoparticles can be achieved with high DNA surface densities, appropriate sequence design and annealing.

    CAS  Google Scholar 

  43. Biancaniello, P., Kim, A. & Crocker, J. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005). The first experimental study demonstrating that DNA-grafted particles (in this case, microparticles) can crystallize; also contains the first direct measurement of the interaction between DNA-grafted particles and the first coarse-grained theoretical model to quantitatively describe the interaction as a function of temperature.

    Google Scholar 

  44. Xiong, H., van der Lelie, D. & Gang, O. DNA linker-mediated crystallization of nanocolloids. J. Am. Chem. Soc. 130, 2442–2443 (2008).

    CAS  Google Scholar 

  45. Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–574 (2006).

    CAS  Google Scholar 

  46. SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA 95, 1460–1465 (1998).

    CAS  Google Scholar 

  47. SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    CAS  Google Scholar 

  48. Dirks, R. M. & Pierce, N. A. A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24, 1664–1677 (2003).

    CAS  Google Scholar 

  49. Dimitrov, R. A. & Zuker, M. Prediction of hybridization and melting for double-stranded nucleic acids. Biophys. J. 87, 215–226 (2004).

    CAS  Google Scholar 

  50. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  Google Scholar 

  51. Markham, N. R. & Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33, W577–W581 (2005).

    CAS  Google Scholar 

  52. Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    CAS  Google Scholar 

  53. Rogers, W. B. & Crocker, J. C. Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl Acad. Sci. USA 108, 15687–15692 (2011).

    CAS  Google Scholar 

  54. Licata, N. A. & Tkachenko, A. V. Statistical mechanics of DNA-mediated colloidal aggregation. Phys. Rev. E 74, 041408 (2006).

    Google Scholar 

  55. Dreyfus, R. et al. Aggregation–disaggregation transition of DNA-coated colloids: experiments and theory. Phys. Rev. E 81, 041404 (2010).

    Google Scholar 

  56. Varilly, P., Angioletti-Uberti, S., Mognetti, B. M. & Frenkel, D. A general theory of DNA-mediated and other valence-limited colloidal interactions. J. Chem. Phys. 137, 094108 (2012).

    Google Scholar 

  57. Mladek, B. M., Fornleitner, J., Martinez-Veracoechea, F. J., Dawid, A. & Frenkel, D. Quantitative prediction of the phase diagram of DNA-functionalized nanosized colloids. Phys. Rev. Lett. 108, 268301 (2012).

    Google Scholar 

  58. Angioletti-Uberti, S., Varilly, P., Mognetti, B. M., Tkachenko, A. V. & Frenkel, D. Communication: a simple analytical formula for the free energy of ligand–receptor-mediated interactions. J. Chem. Phys. 138, 021102 (2013).

    Google Scholar 

  59. Angioletti-Uberti, S., Varilly, P., Mognetti, B. M. & Frenkel, D. Mobile linkers on DNA-coated colloids: valency without patches. Phys. Rev. Lett. 113, 128303 (2014).

    Google Scholar 

  60. Mognetti, B. M. et al. Predicting DNA-mediated colloidal pair interactions. Proc. Natl Acad. Sci. USA 109, E378–E379 (2012).

    CAS  Google Scholar 

  61. Rogers, W. B. & Crocker, J. C. Reply to Mognetti et al.: DNA handshaking interaction data are well described by mean-field and molecular models. Proc. Natl Acad. Sci. USA 109, E380–E380 (2012).

    CAS  Google Scholar 

  62. Feng, L., Pontani, L.-L., Dreyfus, R., Chaikin, P. & Brujic, J. Specificity, flexibility and valence of DNA bonds guide emulsion architecture. Soft Matter 9, 9816–9823 (2013).

    CAS  Google Scholar 

  63. van der Meulen, S. A. J. & Leunissen, M. E. Solid colloids with surface-mobile DNA linkers. J. Am. Chem. Soc. 135, 15129–15134 (2013).

    CAS  Google Scholar 

  64. Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002).

    Google Scholar 

  65. Xiong, H., van der Lelie, D. & Gang, O. Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102, 015504 (2009).

    Google Scholar 

  66. Scarlett, R. T., Crocker, J. C. & Sinno, T. Computational analysis of binary segregation during colloidal crystallization with DNA-mediated interactions. J. Chem. Phys. 132, 234705 (2010).

    Google Scholar 

  67. Scarlett, R. T., Ung, M. T., Crocker, J. C. & Sinno, T. A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions. Soft Matter 7, 1912–1925 (2011).

    CAS  Google Scholar 

  68. Martinez-Veracoechea, F. J., Mladek, B. M., Tkachenko, A. V. & Frenkel, D. Design rule for colloidal crystals of DNA-functionalized particles. Phys. Rev. Lett. 107, 045902 (2011).

    Google Scholar 

  69. Vial, S., Nykypanchuk, D., Yager, K. G., Tkachenko, A. V. & Gang, O. Linear mesostructures in DNA–nanorod self-assembly. ACS Nano 7, 5437–5445 (2013).

    CAS  Google Scholar 

  70. Li, T. I. N. G., Sknepnek, R., Macfarlane, R. J., Mirkin, C. A. & Olvera de la Cruz, M. Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations. Nano Lett. 12, 2509–2514 (2012).

    CAS  Google Scholar 

  71. Li, T. I. N. G., Sknepnek, R. & Olvera de la Cruz, M. Thermally active hybridization drives the crystallization of DNA-functionalized nanoparticles. J. Am. Chem. Soc. 135, 8535–8541 (2013).

    CAS  Google Scholar 

  72. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008). Along with reference 42, which was published concurrently, this paper describes the first successful crystallization of DNA-grafted nanoparticles.

    CAS  Google Scholar 

  73. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    Google Scholar 

  74. Rogers, W. B., Sinno, T. & Crocker, J. C. Kinetics and non-exponential binding of DNA-coated colloids. Soft Matter 9, 6412–6417 (2013).

    CAS  Google Scholar 

  75. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    CAS  Google Scholar 

  76. Macfarlane, R. J., O’Brien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new “table of elements”. Angew. Chem. Int. Ed. Engl. 52, 5688–5698 (2013).

    CAS  Google Scholar 

  77. Casey, M. T. et al. Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nat. Commun. 3, 1209 (2012).

    Google Scholar 

  78. Thaner, R. V. et al. Entropy-driven crystallization behavior in DNA-mediated nanoparticle assembly. Nano Lett. 15, 5545–5551 (2015).

    CAS  Google Scholar 

  79. Haxton, T. K., Hedges, L. O. & Whitelam, S. Crystallization and arrest mechanisms of model colloids. Soft Matter 11, 9307–9320 (2015).

    CAS  Google Scholar 

  80. Grzelczak, M., Pérez-Juste, J., Mulvaney, P. & Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783–1791 (2008).

    CAS  Google Scholar 

  81. Li, C. et al. High-yield synthesis of single-crystalline gold nano-octahedra. Angew. Chem. Int. Ed. Engl. 119, 3328–3332 (2007).

    Google Scholar 

  82. Kim, D. Y. et al. Seed-mediated synthesis of gold octahedra in high purity and with well-controlled sizes and optical properties. Chem. Eur. J. 17, 4759–4764 (2011).

    CAS  Google Scholar 

  83. Hong, S., Shuford, K. L. & Park, S. Shape transformation of gold nanoplates and their surface plasmon characterization: triangular to hexagonal nanoplates. Chem. Mater. 23, 2011–2013 (2011).

    CAS  Google Scholar 

  84. Lohse, S. E. & Murphy, C. J. The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 25, 1250–1261 (2013).

    CAS  Google Scholar 

  85. Kraft, D. J. et al. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc. Natl Acad. Sci. USA 109, 10787–10792 (2012).

    CAS  Google Scholar 

  86. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    CAS  Google Scholar 

  87. Duguet, E., Désert, A., Perro, A. & Ravaine, S. Design and elaboration of colloidal molecules: an overview. Chem. Soc. Rev. 40, 941–960 (2011).

    CAS  Google Scholar 

  88. Sindoro, M., Yanai, N., Jee, A.-Y. & Granick, S. Colloidal-sized metal–organic frameworks: synthesis and applications. Acc. Chem. Res. 47, 459–469 (2014).

    CAS  Google Scholar 

  89. Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011).

    CAS  Google Scholar 

  90. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    CAS  Google Scholar 

  91. Sacanna, S. et al. Shaping colloids for self-assembly. Nat. Commun. 4, 1688 (2013).

    Google Scholar 

  92. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    CAS  Google Scholar 

  93. Fan, J. A. et al. DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett. 11, 4859–4864 (2011).

    CAS  Google Scholar 

  94. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    CAS  Google Scholar 

  95. Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

    CAS  Google Scholar 

  96. Sun, D. et al. Light-harvesting nanoparticle core–shell clusters with controllable optical output. ACS Nano 9, 5657–5665 (2015).

    CAS  Google Scholar 

  97. Kruglova, O., Demeyer, P.-J., Zhong, K., Zhou, Y. & Clays, K. Wonders of colloidal assembly. Soft Matter 9, 9072–9087 (2013).

    CAS  Google Scholar 

  98. Hallam, B. T., Hiorns, A. G. & Vukusic, P. Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles. Appl. Opt. 48, 3243–3249 (2009).

    CAS  Google Scholar 

  99. Wiersma, D. S. Disordered photonics. Nat. Photonics 7, 188–196 (2013).

    CAS  Google Scholar 

  100. Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    CAS  Google Scholar 

  101. Soto, C. M. Srinivasan, A. & Ratna, B. R. Controlled assembly of mesoscale structures using DNA as molecular bridges. J. Am. Chem. Soc. 124, 8508–8509 (2002).

    CAS  Google Scholar 

  102. Schade, N. B. et al. Tetrahedral colloidal clusters from random parking of bidisperse spheres. Phys. Rev. Lett. 110, 148303 (2013).

    Google Scholar 

  103. Urzhumov, Y. A. et al. Plasmonic nanoclusters: a path towards negative-index metafluids. Opt. Express 15, 14129–14145 (2007).

    Google Scholar 

  104. Alu, A. & Engheta, N. The quest for magnetic plasmons at optical frequencies. Opt. Express 17, 5723–5730 (2009).

    CAS  Google Scholar 

  105. Di Michele, L. et al. Multistep kinetic self-assembly of DNA-coated colloids. Nat. Commun. 4, 2007 (2013).

    Google Scholar 

  106. Kim, A. J., Scarlett, R., Biancaniello, P. L., Sinno, T. & Crocker, J. C. Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. Nat. Mater. 8, 52–55 (2009).

    CAS  Google Scholar 

  107. Jenkins, I. C., Casey, M. T., McGinley, J. T., Crocker, J. C. & Sinno, T. Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites. Proc. Natl Acad. Sci. USA 111, 4803–4808 (2014).

    CAS  Google Scholar 

  108. Demirörs, A. F. et al. Long-ranged oppositely charged interactions for designing new types of colloidal clusters. Phys. Rev. X 5, 021012 (2015).

    Google Scholar 

  109. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    CAS  Google Scholar 

  110. Mao, C., LaBean, T. H., Reif, J. H. & Seeman, N. C. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000).

    CAS  Google Scholar 

  111. Rothemund, P. W. K., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).

    Google Scholar 

  112. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    CAS  Google Scholar 

  113. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    CAS  Google Scholar 

  114. Jacobs, W. M., Reinhardt, A. & Frenkel, D. Rational design of self-assembly pathways for complex multicomponent structures. Proc. Natl Acad. Sci. USA 112, 6313–6318 (2015).

    CAS  Google Scholar 

  115. Reinhardt, A. & Frenkel, D. Numerical evidence for nucleated self-assembly of DNA brick structures. Phys. Rev. Lett. 112, 238103 (2014).

    Google Scholar 

  116. Hormoz, S. & Brenner, M. P. Design principles for self-assembly with short-range interactions. Proc. Natl Acad. Sci. USA 108, 5193–5198 (2011).

    CAS  Google Scholar 

  117. Zeravcic, Z., Manoharan, V. N. & Brenner, M. P. Size limits of self-assembled colloidal structures made using specific interactions. Proc. Natl Acad. Sci. USA 111, 15918–15923 (2014).

    CAS  Google Scholar 

  118. Tkachenko, A. V. Theory of programmable hierarchic self-assembly. Phys. Rev. Lett. 106, 255501 (2011).

    Google Scholar 

  119. Halverson, J. D. & Tkachenko, A. V. DNA-programmed mesoscopic architecture. Phys. Rev. E 87, 062310 (2013).

    Google Scholar 

  120. Wu, K.-T. et al. Polygamous particles. Proc. Natl Acad. Sci. USA 109, 18731–18736 (2012).

    CAS  Google Scholar 

  121. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012). This paper describes the synthesis and assembly of colloidal microparticles with both specific and directional interactions; such particles might be able to assemble like DNA bricks if a sufficient number of different species can be synthesized.

    CAS  Google Scholar 

  122. Feng, L., Dreyfus, R., Sha, R., Seeman, N. C. & Chaikin, P. M. DNA patchy particles. Adv. Mater. 25, 2779–2783 (2013).

    CAS  Google Scholar 

  123. Maye, M. M., Nykypanchuk, D., Cuisinier, M., van der Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat. Mater. 8, 388–391 (2009).

    CAS  Google Scholar 

  124. Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 9, 913–917 (2010).

    CAS  Google Scholar 

  125. Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).

    CAS  Google Scholar 

  126. O’Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 14, 833–839 (2015).

    Google Scholar 

  127. Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011).

    CAS  Google Scholar 

  128. Endo, M., Sugita, T., Katsuda, Y., Hidaka, K. & Sugiyama, H. Programmed-assembly system using DNA jigsaw pieces. Chem. Eur. J. 16, 5362–5368 (2010).

    CAS  Google Scholar 

  129. Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces. ACS Nano 5, 665–671 (2011).

    CAS  Google Scholar 

  130. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS  Google Scholar 

  131. Tian, Y. et al. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 10, 637–644 (2015). Experimental study showing that DNA origami can be used to organize the assembly of nanoparticles, demonstrating what can be achieved by combining structural DNA nanotechnology with DNA-grafted nanoparticles.

    CAS  Google Scholar 

  132. Roldán-Vargas, S., Smallenburg, F., Kob, W. & Sciortino, F. Gelling by heating. Sci. Rep. 3, 2451 (2013).

    Google Scholar 

  133. Rogers, W. B. & Manoharan, V. N. Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).

    CAS  Google Scholar 

  134. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    CAS  Google Scholar 

  135. Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801 (2005).

    Google Scholar 

  136. Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8, 531–554 (2013).

    CAS  Google Scholar 

  137. Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    CAS  Google Scholar 

  138. Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  Google Scholar 

  139. Winfree, E. & Bekbolatov, R. in DNA Computing (eds Chen, J.& Reif, J.) 126–144 (Springer, 2003).

    Google Scholar 

  140. Murugan, A., Huse, D. A. & Leibler, S. Discriminatory proofreading regimes in nonequilibrium systems. Phys. Rev. X 4, 021016 (2014).

    Google Scholar 

  141. Shin, J.-S. & Pierce, N. A. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

    CAS  Google Scholar 

  142. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    CAS  Google Scholar 

  143. Leunissen, M. E. et al. Towards self-replicating materials of DNA-functionalized colloids. Soft Matter 5, 2422–2430 (2009).

    CAS  Google Scholar 

  144. Wang, T. et al. Self-replication of information-bearing nanoscale patterns. Nature 478, 225–228 (2011).

    CAS  Google Scholar 

  145. Zeravcic, Z. & Brenner, M. P. Self-replicating colloidal clusters. Proc. Natl Acad. Sci. USA 111, 1748–1753 (2014).

    CAS  Google Scholar 

  146. Li, C.-J. & Trost, B. M. Green chemistry for chemical synthesis. Proc. Natl Acad. Sci. USA 105, 13197–13202 (2008).

    CAS  Google Scholar 

  147. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    CAS  Google Scholar 

  148. Zhang, Y. et al. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nat. Mater. 14, 840–847 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Brenner, D. Frenkel, O. Gang, A. Tkachenko, W. Jacobs, D. Pine, P. Chaikin, J. Crocker and B. Mognetti for discussions and the National Science Foundation for funding through grant no. DMR-1435964.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Benjamin Rogers, William M. Shih or Vinothan N. Manoharan.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, W., Shih, W. & Manoharan, V. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat Rev Mater 1, 16008 (2016). https://doi.org/10.1038/natrevmats.2016.8

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing