Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A plant receptor-like kinase required for both bacterial and fungal symbiosis

Abstract

Most higher plant species can enter a root symbiosis with arbuscular mycorrhizal fungi, in which plant carbon is traded for fungal phosphate1,2. This is an ancient symbiosis, which has been detected in fossils of early land plants3. In contrast, the nitrogen-fixing root nodule symbioses of plants with bacteria evolved more recently, and are phylogenetically restricted to the rosid I clade of plants4. Both symbioses rely on partially overlapping genetic programmes5,6. We have identified the molecular basis for this convergence by cloning orthologous SYMRK (‘symbiosis receptor-like kinase’) genes from Lotus and pea, which are required for both fungal and bacterial recognition. SYMRK is predicted to have a signal peptide, an extracellular domain comprising leucine-rich repeats, a transmembrane and an intracellular protein kinase domain. Lotus SYMRK is required for a symbiotic signal transduction pathway leading from the perception of microbial signal molecules to rapid symbiosis-related gene activation. The perception of symbiotic fungi and bacteria is mediated by at least one common signalling component, which could have been recruited during the evolution of root nodule symbioses from the already existing arbuscular mycorrhiza symbiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Root hair responses of wild-type and a Lotus SYMRK mutant to bacterial inoculation.
Figure 2: NF-induced gene activation is Lotus SYMRK-dependent.
Figure 3: Positional cloning of Lotus SYMRK.
Figure 4: Features of the Lotus SYMRK amino-acid sequence.

Similar content being viewed by others

References

  1. Harrison, M. J. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 361–389 (1999)

    Article  CAS  Google Scholar 

  2. Rausch, C. et al. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462–470 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Remy, W., Taylor, T. N., Hass, H. & Kerp, H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl Acad. Sci. USA 91, 11841–11843 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Soltis, D. E. et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen-fixation in angiosperms. Proc. Natl Acad. Sci. USA 92, 2647–2651 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. & Gianinazzi, S. First report of non-mycorrhizal plant mutants (myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 60, 215–222 (1989)

    Article  Google Scholar 

  6. Wegel, E., Schauser, L., Sandal, N., Stougaard, J. & Parniske, M. Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol. Plant-Microbe Interact. 11, 933–936 (1998)

    Article  CAS  Google Scholar 

  7. Szczyglowski, K. et al. Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol. Plant-Microbe Interact. 11, 684–697 (1998)

    Article  CAS  Google Scholar 

  8. Schauser, L. et al. Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol. Gen. Genet. 259, 414–423 (1998)

    Article  CAS  Google Scholar 

  9. Bonfante, P. et al. The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol. Plant-Microbe Interact. 13, 1109–1120 (2000)

    Article  CAS  Google Scholar 

  10. Downie, J. A. & Walker, S. A. Plant responses to nodulation factors. Curr. Opin. Plant Biol. 2, 483–489 (1999)

    Article  CAS  Google Scholar 

  11. Schauser, L., Roussis, A., Stiller, J. & Stougaard, J. A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Heidstra, R., Nilsen, G., Martinez-Abarca, F., van Kammen, A. & Bisseling, T. Nod factor-induced expression of leghemoglobin to study the mechanism of NH4NO3 inhibition on root hair deformation. Mol. Plant-Microbe Interact. 10, 215–220 (1997)

    Article  CAS  Google Scholar 

  13. Sato, S. et al. Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover 5.4 Mb of the genome. DNA Res. 8, 311–318 (2001)

    Article  CAS  Google Scholar 

  14. Cullimore, J. V., Ranjeva, R. & Bono, J. J. Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci. 6, 24–30 (2001)

    Article  CAS  Google Scholar 

  15. Shiu, S. H. & Bleecker, A. B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl Acad. Sci. USA 98, 10763–10768 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Jones, D. A. & Jones, J. D. G. The role of leucine-rich repeat proteins in plant defences. Adv. Bot. Res. 24, 89–167 (1997)

    Article  Google Scholar 

  17. Catoira, R. et al. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12, 1647–1665 (2000)

    Article  CAS  Google Scholar 

  18. Walker, S. A., Viprey, V. & Downie, J. A. Dissection of nodulation signalling using pea mutants defective for calcium-spiking induced by Nod-factors and chitin oligomers. Proc. Natl Acad. Sci. USA 97, 13413–13418 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Wais, R. J. et al. Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc. Natl Acad. Sci. USA 97, 13407–13412 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Schneider, A. et al. Genetic mapping and functional analysis of a nodulation-defective mutant (sym19) of pea (Pisum sativum L.). Mol. Gen. Genet. 262, 1–11 (1999)

    Article  CAS  Google Scholar 

  21. Turner, S. R., Hellens, R., Ireland, R., Ellis, N. & Rawsthorne, S. The organization and expression of the genes encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisum sativum). Mol. Gen. Genet. 236, 402–408 (1993)

    Article  CAS  Google Scholar 

  22. Ehrhardt, D. W., Wais, R. & Long, S. R. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85, 673–681 (1996)

    Article  CAS  Google Scholar 

  23. Duc, G. & Messager, A. Mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation. Plant Sci. 60, 207–213 (1989)

    Article  Google Scholar 

  24. van Spronsen, P. C., Gronlund, M., Paciaos Bras, C., Spaink, H. P. & Kijne, J. W. Cell biological changes of outer cortical root cells in early determinate nodulation. Mol. Plant-Microbe Interact. 14, 839–847 (2001)

    Article  CAS  Google Scholar 

  25. Firmin, J. L., Wilson, K. E., Carlson, R. W., Davies, A. E. & Downie, J. A. Resistance to nodulation of cv. Afghanistan peas is overcome by nodx, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol. Microbiol. 10, 351–360 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Downie and D. Bradley for comments on the manuscript, A. Serna-Sanz for supplying nod-factor preparations, C. Pacios Bras and H. Spaink for making available M. loti R7A carrying lacZ, C. Ronson for providing the M. loti NodC mutant, A. Edwards and C. Martin for help with Pisum libraries, and V. Viprey for the gift of Pisum and Medicago cDNA. We thank M.-A. Torres for structure prediction. C.K. was supported by a postdoctoral fellowship from the DFG (Deutsche Forschungsgemeinschaft). Research at the Sainsbury Laboratory is funded by the Gatsby Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Parniske.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stracke, S., Kistner, C., Yoshida, S. et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959–962 (2002). https://doi.org/10.1038/nature00841

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00841

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing