Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

Abstract

The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions1. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean2. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors3. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific ‘ladderane’ membrane lipids4 indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings5,6,7 indicates that anammox might be important in the oceanic nitrogen cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology and physiology of anammox bacteria and their role in the marine nitrogen cycle.
Figure 2: Chemical zoning and distribution of anammox indicators across the Black Sea chemocline.
Figure 3: Phylogenetic tree of 16S rRNA gene sequences showing the order Planctomycetales and the position of the anammox-affiliated organisms from the Black Sea (indicated by a rectangle).

Similar content being viewed by others

References

  1. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Codispoti, L. A. & Christensen, J. P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific Ocean. Mar. Chem 16, 277–300 (1985)

    Article  CAS  Google Scholar 

  3. Strous, M. et al. Missing litotroph identified as new planctomycete. Nature 400, 446–449 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Sinninghe Damsté, J. S. et al. Linearly concatenated cyclobutane (ladderane) lipids from a dense bacterial membrane. Nature 419, 708–712 (2002)

    Article  ADS  Google Scholar 

  5. Bender, M. et al. Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim. Cosmochim. Acta 53, 685–697 (1989)

    Article  ADS  CAS  Google Scholar 

  6. Codispoti, L. A., Friederich, G. E., Murray, J. W. & Sakamoto, C. M. Chemical variability in the Black Sea: implications of continuous vertical profiles that penetrated the oxic/anoxic interface. Deep-Sea Res. 38, S691–S710 (1991)

    Article  ADS  Google Scholar 

  7. Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68, 1312–1318 (2002)

    Article  CAS  Google Scholar 

  8. Sorokin, Y. I. The Black Sea—Ecology and Oceanography (ed. Martens, K.) 1–875 (Backhuys, Leiden, 2002)

    Google Scholar 

  9. Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979)

    Article  ADS  CAS  Google Scholar 

  10. Richards, F. A. in Chemical Oceanography (eds Ripley, J. P. & Skirrow, G.) 611–645 (Academic, London, 1965)

    Google Scholar 

  11. Murray, J. W., Codispoti, L. A. & Frederich, G. E. in Aquatic Chemistry (eds Huang, C. P., O'Melia, C. R. & Morgan, J. J.) 157–176 (American Chemical Society, Washington DC, 1995)

    Book  Google Scholar 

  12. Kuenen, J. G. & Jetten, M. S. M. Extraordinary anaerobic ammonium-oxidizing bacteria. ASM News 67, 456–463 (2001)

    Google Scholar 

  13. Dalsgaard, T. & Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl. Environ. Microbiol. 68, 3802–3808 (2002)

    Article  CAS  Google Scholar 

  14. Mulder, A., van de Graaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177–184 (1995)

    Article  CAS  Google Scholar 

  15. Schmid, M. et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23, 93–106 (2000)

    Article  CAS  Google Scholar 

  16. Ward, B. B. & Kilpatrick, K. A. in Black Sea Oceanography (eds Izdar, E. & Murray, J. W.) 111–124 (Kluwer Academic, Dordrecht, 1991)

    Book  Google Scholar 

  17. Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea (ed. Hill, M. N.) 26–77 (Interscience, New York, 1963)

    Google Scholar 

  18. Karl, D. M. & Knauer, G. A. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep-Sea Res. 38, S921–S942 (1991)

    Article  ADS  Google Scholar 

  19. Schmid, M., Schmitz-Esser, S., Jetten, M. & Wagner, M. 16S–23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ. Microbiol. 3, 450–459 (2001)

    Article  CAS  Google Scholar 

  20. Neef, A., Amann, R., Schlesner, H. & Schleifer, K. H. Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144, 3257–3266 (1998)

    Article  CAS  Google Scholar 

  21. Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 6, 1919–1925 (1990)

    Google Scholar 

  22. Pernthaler, J., Glöckner, F. O., Schönhuber, W. & Amann, R. in Methods in Microbiology (ed. Paul, J. H.) 207–226 (Academic, London, 2001)

    Google Scholar 

  23. Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Oguz, T., Murray, J. W. & Callahan, A. E. Modeling redox cycling across the suboxic-anoxic interface zone in the Black Sea. Deep-Sea Res. I 48, 761–787 (2001)

    Article  CAS  Google Scholar 

  25. Lewis, B. & Landing, W. M. The biogeochemistry of manganese and iron in the Black Sea. Deep-Sea Res. 38 (suppl. 2), S773–S803 (1991)

    Article  ADS  Google Scholar 

  26. Li, L., Kato, C. & Horikoshi, K. Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv. 8, 659–677 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Neretin for discussions; the Romanian and Turkish authorities for access to their national waters; the crew of the R/V Meteor for collaboration; S. Krüger, F. Pollehne and T. Leipe (IOW, Warnemünde) for operating the pumpcast and providing the CTD data; J. Eygensteyn, A. Pol, H. op den Camp, K. van de Pas Schoonen and G. Klockgether for analytical assistance. C. Hanfland and the AWI (Bremerhaven) provided the in situ pumps. The investigations were supported by the MPG, the University of Nijmegen, the TU Delft and the DFG. M.M.M.K. was financially supported by the EC Human Potential Programme Research Training Networks Activity (CT-net); A.O.S. was supported by a grant of the ALW; M. Schmid was supported by an EU grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel M. M. Kuypers.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuypers, M., Sliekers, A., Lavik, G. et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608–611 (2003). https://doi.org/10.1038/nature01472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01472

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing