Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bending-related faulting and mantle serpentinization at the Middle America trench

Abstract

The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50–300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colour-coded bathymetry and elevation map along 600 km of the Middle America trench.
Figure 2: Poststack finite-difference time migration of various lines.
Figure 3: Fault offsets measured at the sea floor and top of igneous basement for faults marked on Fig. 2, plotted versus distance to the trench axis.
Figure 4: Histogram of fault density versus distance to the trench axis.

Similar content being viewed by others

References

  1. Savage, J. C. The mechanics of deep-focus faulting. Tectonophysics 8, 115–127 (1969)

    Article  ADS  Google Scholar 

  2. Frohlich, C. The nature of deep-focus earthquakes. Annu. Rev. Earth Planet. Sci. 17, 227–254 (1989)

    Article  ADS  Google Scholar 

  3. Raleigh, C. B. & Paterson, M. S. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res. 70, 3965–3985 (1965)

    Article  ADS  Google Scholar 

  4. Kirby, S., Engdahl, E. R. & Denlinger, R. in Subduction: Top to Bottom (eds Bebout, G. E., Scholl, D., Kirby, S. H. & Platt, J. P.) 195–214 (Geophysical Monograph 96, American Geophysical Union, Washington, 1996)

    Google Scholar 

  5. Tibi, R., Bock, G. & Estabrook, C. H. Seismic body wave constraint on mechanisms of intermediate-depth earthquakes. J. Geophys. Res. 107, 101029/2001JB000361 (2002)

  6. Meade, C. & Jeanloz, R. Deep focus earthquakes and recycling of water into the Earth's mantle. Science 252, 68–72 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Peacock, S. Are the lower planes of double seismic zones caused by serpentine dyhydration in subducting oceanic mantle? Geology 29, 299–302 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Jiao, W., Silver, P. G., Fei, Y. & Prewitt, C. T. Do intermediate- and deep-focus earthquakes occur on preexisting weak zones? An examination of the Tonga subduction zone. J. Geophys. Res. 105, 28125–28138 (2000)

    Article  ADS  Google Scholar 

  9. Gill, J. Orogenic Andesites and Plate Tectonics (Springer, New, 1981)

    Book  Google Scholar 

  10. Ulmer, P. & Trommsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858–861 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Ernst, W. G. Hornblende. The continent maker—Evolution of H2O during circum-Pacific subduction versus continental collision. Geology 27, 675–678 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Peacock, S. Fluid processes in subduction zones. Science 248, 329–337 (1990)

    Article  ADS  CAS  Google Scholar 

  13. Moore, J. C. & Vrolijk, P. Fluids in accretionary prisms. Rev. Geophys. 30, 113–135 (1992)

    Article  ADS  Google Scholar 

  14. Seno, T. & Yamanaka, Y. in Subduction: Top to Bottom (eds Bebout, G. E., Scholl, D., Kirby, S. H. & Platt, J. P.) 347–355 (Geophysical Monograph 96, American Geophysical Union, Washington, 1996)

    Google Scholar 

  15. Christensen, D. H. & Ruff, L. Seismic coupling and outer rise earthquakes. J. Geophys. Res. 93, 13421–13444 (1988)

    Article  ADS  Google Scholar 

  16. Hasegawa, A., Horiuchi, S. & Umino, N. Seismic structure of the northeastern Japan convergent margin: A synthesis. J. Geophys. Res. 99, 22295–22311 (1994)

    Article  ADS  Google Scholar 

  17. Barckhausen, G. A., Ranero, C. R., von Huene, R., Cande, S. & Roeser, H. Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. J. Geophys. Res. 106, 19207–19220 (2001)

    Article  ADS  Google Scholar 

  18. Protti, M., Guendel, F. & McNally, K. Correlation between the age of the subducting Cocos plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica. Geol. Soc. Am. (Spec. Pap.) 295, 309–326 (1995)

    Google Scholar 

  19. Li, C. Forearc structures and tectonics in the Southern Peru—Northern Chile continental margin. Mar. Geophys. Res. 17, 97–113 (1995)

    Article  Google Scholar 

  20. von Huene, R. et al. Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16, 474–488 (1997)

    Article  ADS  Google Scholar 

  21. von Huene, R. & Ranero, C. R. Subduction erosion and basal friction along the sediment starved convergent margin off Antofagasta Chile. J. Geophys. Res. 108(2079), 101029/2001JB001569 (2003)

  22. Kobayashi, K., Nakanishi, M., Tamaki, K. & Ogawa, Y. Outer slope faulting associated with the western Kuril and Japan trenches. Geophys. J. Int. 134, 356–372 (1998)

    Article  ADS  Google Scholar 

  23. Masson, D. G. Fault patterns at outer trench walls. Mar. Geophys. Res. 13, 209–225 (1991)

    Article  ADS  Google Scholar 

  24. Ranero, C. R., Reston, T. J., Belykh, I. & Gnibidenko, H. Reflective oceanic crust formed at a fast-spreading center in the Pacific. Geology 25, 499–502 (1997)

    Article  ADS  Google Scholar 

  25. Barth, G. A. & Mutter, J. C. Variability in oceanic crustal thickness and structure: Multichannel seismic reflection results from the northern East Pacific Rise. J. Geophys. Res. 101, 17951–17975 (1996)

    Article  ADS  Google Scholar 

  26. Detrick, R. S. et al. Seismic structure of the southern East Pacific Rise. Science 259, 499–503 (1993)

    Article  ADS  CAS  Google Scholar 

  27. Carbotte, S. M., Solomon, A. & Ponce-Correa, G. Evaluation of morphological indicators of magma supply and segmentation from a seismic reflection study of the East Pacific Rise 15 30'-17 N. J. Geophys. Res. 105, 2737–2759 (2000)

    Article  ADS  Google Scholar 

  28. Phipps Morgan, J., Harding, A., Orcutt, J., Kent, G. & Chen, Y. J. in Magmatic Systems (ed. Ryan, M. P.) 139–178 (Academic, 1994)

    Book  Google Scholar 

  29. Morton, J. & Sleep, N. A mid-ocean ridge thermal model: constraints on the volume of axial hydrothermal flux. J. Geophys. Res. 90, 11345–11353 (1985)

    Article  ADS  Google Scholar 

  30. Nicolas, A. Structures of Ophiolites and Dynamics of Oceanic Lithosphere (Kluwer Academic, Dordrecht, 1989)

    Book  Google Scholar 

  31. Phipps Morgan, J. & Chen, Y. J. The genesis of oceanic crust: Magma injection, hydrothermal circulation, and crustal flow. J. Geophys. Res. 98, 6283–6297 (1993)

    Article  ADS  Google Scholar 

  32. Hallenborg, E., Harding, A. J., Kent, G. M. & Wilson, D. S. Seismic structure of 15 Ma oceanic crust formed at an ultra-fast spreading East Pacific Rise: evidence for kilometer-scale fracturing from dipping reflectors. J. Geophys. Res. (in the press)

  33. Ranero, C. R., Banda, E. & Buhl, P. The crustal structure of the Canary Basin: Accretion processes at slow spreading centers. J. Geophys. Res. 102, 10185–10201 (1997)

    Article  ADS  Google Scholar 

  34. Carbotte, S. M. & Macdonald, K. C. Comparison of the seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges: Influence on spreading rate, plate motions, and ridge segmentation on fault patterns. J. Geophys. Res. 99, 13609–13631 (1994)

    Article  ADS  Google Scholar 

  35. Sibson, R. H. Controls on low-stress hydrofracturing dilatancy in thrust, wrench and normal fault terrains. Nature 289, 665–667 (1981)

    Article  ADS  Google Scholar 

  36. Lynnes, C. S. & Lay, T. Source process of the great 1977 Sumba earthquake. J. Geophys. Res. 93, 13407–13420 (1988)

    Article  ADS  Google Scholar 

  37. Langseth, M. G. & Silver, E. The Nicoya convergent margin—a region of exceptionally low heat flow. Geophys. Res. Lett. 23, 891–894 (1996)

    Article  ADS  Google Scholar 

  38. Yamano, M. & Uyeda, S. Heat-floor studies in the Peru trench subduction zone. Proc. ODP Sci. Res. 112, 653–661 (1990)

    Google Scholar 

  39. Ruepke, L. H., Phipps Morgan, J., Hort, M. & Connolly, J. A. D. Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30, 1035–1038 (2002)

    Article  ADS  CAS  Google Scholar 

  40. Bock, G., Schurr, B. & Asch, G. High-resolution image of oceanic Moho in the subducting Nazca plate from P-S converted waves. Geophys. Res. Lett. 27, 3929–3932 (2000)

    Article  ADS  Google Scholar 

  41. Cassidy, J. F. & Waldhauser, F. Evidence for both crustal and mantle earthquakes in the subducting Juan de Fuca plate. J. Geophys. Res. 108, 10101029/2002GL015511 (2003)

    Google Scholar 

  42. Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydratation reactions? J. Geophys. Res. 108, 20101029/2001JB001129 (2003)

  43. Macdonald, H. & Fyfe, W. S. Rate of serpentinization in seafloor environments. Tectonophysics 116, 123–135 (1985)

    Article  ADS  CAS  Google Scholar 

  44. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci. 163, 361–379 (1998)

    Article  ADS  CAS  Google Scholar 

  45. Chauval, C., Hofmann, A. W. & Vidal, P. HIMU-EM: The French-Polynesian connection. Earth Planet. Sci. Lett. 110, 99–119 (1992)

    Article  ADS  Google Scholar 

  46. Porcelli, D. & Wasserburg, G. J. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 4921–4937 (1995)

    Article  ADS  CAS  Google Scholar 

  47. Ranero, C. R. & Von Huene, R. Subduction erosion along the Middle America convergent margin. Nature 404, 748–752 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The bathymetry data were collected during R/V Sonne cruises 76, 81, 107, 144, 150 and 163, R/V Meteor cruise 54 and R/V M. Ewing cruises 0005 (Chief Scientist K. McIntosh) and 0104 (Chief Scientist A. Fisher). The seismic reflection data were collected during BGR99 cruise aboard M/V Professor Polshkov. We thank the scientific parties for their efforts and officers and crews for their technical and logistical support. R/V Sonne cruises were funded by Deutsche BMBF, the R/V Meteor cruise by the DFG and the R/V M. Ewing cruises by the NSF-USA. This work is a contribution of ‘SFB574 Volatiles and Fluids in Subduction Zones’ from the University of Kiel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Ranero.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranero, C., Phipps Morgan, J., McIntosh, K. et al. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003). https://doi.org/10.1038/nature01961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01961

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing