Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structure of the high-energy spin excitations in a high-transition-temperature superconductor

Abstract

In conventional superconductors, lattice vibrations (phonons) mediate the attraction between electrons that is responsible for superconductivity1. The high transition temperatures (high-Tc) of the copper oxide superconductors has led to collective spin excitations being proposed as the mediating excitations in these materials2. The mediating excitations must be strongly coupled to the conduction electrons, have energy greater than the pairing energy, and be present at Tc. The most obvious feature in the magnetic excitations of high-Tc superconductors such as YBa2Cu3O6+x is the so-called ‘resonance’3,4,5,6. Although the resonance may be strongly coupled to the superconductivity3,4,5,6,7,8, it is unlikely to be the main cause, because it has not been found in the La2-x(Ba,Sr)xCuO4 family and is not universally present in Bi2Sr2CaCu2O8+δ (ref. 9). Here we use inelastic neutron scattering to characterize possible mediating excitations at higher energies in YBa2Cu3O6.6. We observe a square-shaped continuum of excitations peaked at incommensurate positions. These excitations have energies greater than the superconducting pairing energy, are present at Tc, and have spectral weight far exceeding that of the ‘resonance’. The discovery of similar excitations in La2–xBaxCuO4 (ref. 10) suggests that they are a general property of the copper oxides, and a candidate for mediating the electron pairing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of the magnetic excitations in YBa2Cu3O6.6, for various temperatures, measured by neutron scattering.
Figure 2: Images of the magnetic scattering in YBa2Cu3O6.6 at T = 10 K for various excitation energies (frequencies).

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Chubukov, A. V., Pines, D. & Schmalian, J. in The Physics of Superconductors Vol. I, Conventional and High-T c Superconductors (eds Bennemann, K. H. & Ketterson, J. B.) 495–590 (Springer, Berlin, 2003)

    Google Scholar 

  3. Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 185, 86–92 (1991)

    Article  ADS  Google Scholar 

  4. Mook, H. A., Yethiraj, M., Aeppli, G., Mason, T. E. & Armstrong, T. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7 . Phys. Rev. Lett. 70, 3490–3493 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Dai, P. et al. The magnetic excitation spectrum and thermodynamics of high-Tc superconductors. Science 284, 1344–1347 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Stock, C. et al. Dynamic stripes and resonance in the superconducting and normal phases of YBa2Cu3O6.5 ortho-II superconductor. Phys. Rev. B 69, 014502 (2004)

    Article  ADS  Google Scholar 

  7. Scalapino, D. J. & White, S. R. Superconducting condensation energy and an antiferromagnetic exchange-based pairing mechanism. Phys. Rev. B 58, 8222–8224 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Demler, E. & Zhang, S. C. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature 396, 733–735 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Hwang, J., Timusk, T. & Gu, G. D. High-transition-temperature superconductivity in the absence of the magnetic-resonance mode. Nature 427, 714–717 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Axe, J. D. & Shirane, G. Influence of the superconducting energy gap on phonon linewidths in Nb3Sn. Phys. Rev. Lett. 30, 214–216 (1973)

    Article  ADS  CAS  Google Scholar 

  12. Dai, P., Mook, H. A. & Dogan, F. Incommensurate magnetic fluctuations in YBa2Cu3O6.6 . Phys. Rev. Lett. 80, 1738–1741 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Mook, H. A. et al. Spin fluctuations in YBa2Cu3O6.6 . Nature 395, 580–582 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Arai, M. et al. Incommensurate spin dynamics of underdoped superconductor YBa2Cu3O6.7 . Phys. Rev. Lett. 83, 608–611 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3O6.85 . Science 288, 1234–1237 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Bourges, P. et al. High-energy spin excitations in YBa2Cu3O6.5 . Phys. Rev. B 56, R11439–R11442 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Hayden, S. M. et al. Absolute measurements of the high-frequency magnetic dynamics in high-Tc superconductors. Physica B 241–243, 765–772 (1998)

    ADS  Google Scholar 

  18. Fong, H. F. et al. Spin susceptibility in underdoped YBa2Cu3O6+x . Phys. Rev. B 61, 14773–14786 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Christensen, N. B. et al. Universal dispersive excitations in the high-temperature superconductors. Preprint at 〈http://arxiv.org/abs/cond-mat/0403439〉 (2004).

  22. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Shamoto, S., Sato, M., Tranquada, J. M., Sternlieb, B. & Shirane, G. Neutron-scattering study of antiferromagnetism in YBa2Cu3O6.15 . Phys. Rev. B 48, 13817–13825 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Bulut, N., Hone, D., Scalapino, D. J. & Bickers, N. E. Random-phase approximation analysis of NMR and neutron-scattering experiments on layered cuprates. Phys. Rev. Lett. 64, 2723–2726 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Norman, M. R. Relation of neutron incommensurability to electronic structure in high-temperature superconductors. Phys. Rev. B 61, 14751–14758 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Hussey, N. E., Abdel-Jawad, M., Carrington, A., Mackenzie, A. P. & Balicas, L. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor. Nature 425, 814–817 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the UK EPSRC, the US NSF and the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hayden.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Simulations of scattering from two types of magnetic excitations including the effects of the experimental resolution and smoothing for E=85 meV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, S., Mook, H., Dai, P. et al. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004). https://doi.org/10.1038/nature02576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02576

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing