Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals

Abstract

Control of spontaneously emitted light lies at the heart of quantum optics. It is essential for diverse applications ranging from miniature lasers and light-emitting diodes1,2,3,4,5, to single-photon sources for quantum information6,7,8, and to solar energy harvesting9. To explore such new quantum optics applications, a suitably tailored dielectric environment is required in which the vacuum fluctuations that control spontaneous emission can be manipulated10,11. Photonic crystals provide such an environment: they strongly modify the vacuum fluctuations, causing the decay of emitted light to be accelerated or slowed down12,13, to reveal unusual statistics14, or to be completely inhibited in the ideal case of a photonic bandgap1,15. Here we study spontaneous emission from semiconductor quantum dots embedded in inverse opal photonic crystals16. We show that the spectral distribution and time-dependent decay of light emitted from excitons confined in the quantum dots are controlled by the host photonic crystal. Modified emission is observed over large frequency bandwidths of 10%, orders of magnitude larger than reported for resonant optical microcavities17. Both inhibited and enhanced decay rates are observed depending on the optical emission frequency, and they are controlled by the crystals' lattice parameter. Our experimental results provide a basis for all-solid-state dynamic control of optical quantum systems18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Angle-resolved spectral measurements.
Figure 2: Luminescence decay curves of quantum dots inside three different photonic crystals.
Figure 3: Measured decay rates of the excited states of quantum dots in photonic crystals with different lattice parameters.
Figure 4: Measured decay rate at three fixed frequencies, ωL, ωM and ωS, corresponding to large, medium and small sized quantum dots, when varying the lattice parameter a.

Similar content being viewed by others

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  CAS  Google Scholar 

  2. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)

    Article  CAS  Google Scholar 

  3. Smith, C. J. M. et al. Near-infrared microcavities confined by two-dimensional photonic bandgap crystals. Electron. Lett. 35, 228–230 (1999)

    Article  CAS  Google Scholar 

  4. Colombelli, R. et al. Quantum cascade surface-emitting photonic crystal laser. Science 302, 1374–1377 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Noda, S. et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A single-photon turnstile device. Nature 397, 500–503 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    Article  ADS  Google Scholar 

  9. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  ADS  Google Scholar 

  10. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, Cambridge, 1997)

    Book  Google Scholar 

  11. Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, New York, 2000)

    MATH  Google Scholar 

  12. Bykov, V. P. Spontaneous emission from a medium with a band spectrum. Sov. J. Quant. Electron. 4, 861–871 (1975)

    Article  ADS  Google Scholar 

  13. Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R. & Bay, S. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys. 63, 455–503 (2000)

    Article  ADS  CAS  Google Scholar 

  14. John, S. & Quang, T. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A 50, 1764–1769 (1994)

    Article  ADS  CAS  Google Scholar 

  15. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  CAS  Google Scholar 

  16. Wijnhoven, J. E. G. J. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Sprik, R., van Tiggelen, B. A. & Lagendijk, A. Optical emission in periodic dielectrics. Europhys. Lett. 35, 265–270 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Busch, K. & John, S. Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 58, 3896–3908 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Koenderink, A. F. & Vos, W. L. Light exiting from real photonic band gap crystals is diffuse and strongly directional. Phys. Rev. Lett. 91, 213902 (2003)

    Article  ADS  Google Scholar 

  22. Fisher, B. R., Eisler, H.-J., Stott, N. E. & Bawendi, M. G. Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes. J. Phys. Chem. B 108, 143–148 (2004)

    Article  CAS  Google Scholar 

  23. Wang, R., Wang, X.-H., Gu, B.-Y. & Yang, G.-Z. Local density of states in three-dimensional photonic crystals: Calculation and enhancement effects. Phys. Rev. B 67, 155114 (2003)

    Article  ADS  Google Scholar 

  24. Koenderink, A. F., Bechger, L., Schriemer, H. P., Lagendijk, A. & Vos, W. L. Broadband fivefold reduction of vacuum fluctuations probed by dye in photonic crystals. Phys. Rev. Lett. 88, 143903 (2002)

    Article  ADS  Google Scholar 

  25. Li, Z. Y. & Zhang, Z. Q. Weak photonic band gap effect on the fluorescence lifetime in three-dimensional colloidal photonic crystals. Phys. Rev. B 63, 125106 (2001)

    Article  ADS  Google Scholar 

  26. Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998)

    Article  ADS  Google Scholar 

  27. Bayer, M. et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys. Rev. Lett. 86, 3168–3171 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Hood, C. J., Chapman, M. S., Lynn, T. W. & Kimble, H. J. Real-time cavity QED with single atoms. Phys. Rev. Lett. 80, 4157–4160 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Dabbousi, B. O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997)

    Article  CAS  Google Scholar 

  30. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Woldering for sample preparation, F. Koenderink for DOS calculations, A. Mosk and J. Kelly for discussions, and A. Lagendijk for support. This work is part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lodahl.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodahl, P., Floris van Driel, A., Nikolaev, I. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004). https://doi.org/10.1038/nature02772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02772

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing