Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fracture surface energy of the Punchbowl fault, San Andreas system

Abstract

Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening1,2,3. Fracture energy has been estimated from seismological and experimental rock deformation data4,5,6,7,8, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined8,9,10. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault11,12 in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simple representation of the energy budget for earthquakes on the basis of fault slip-weakening models10,14,15.
Figure 2: Structural model of the Punchbowl fault zone for calculating fracture surface area.
Figure 3: Particle size of ultracataclasite and subsidiary fault cataclasite.
Figure 4: Subsidiary fault and microfracture density in the damaged Punchbowl Formation along the fault24.

Similar content being viewed by others

References

  1. Ida, Y. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972)

    Article  ADS  Google Scholar 

  2. Husseini, M. I. & Randall, M. J. Rupture velocity and radiation efficiency. Bull. Seismol. Soc. Am. 66, 1173–1187 (1976)

    Google Scholar 

  3. Andrews, D. J. Rupture dynamics with energy loss outside the slip zone. J. Geophys. Res. 110, B01307 (2005)

    Article  ADS  Google Scholar 

  4. Wong, T. F. Shear fracture energy of Westerly granite from post-failure behaviour. J. Geophys. Res. 87, 990–1000 (1982)

    Article  ADS  Google Scholar 

  5. Okubo, P. G. & Dieterich, J. H. Effects of physical fault properties on frictional instabilities produced on simulated faults. J. Geophys. Res. 89, 5817–5827 (1984)

    Article  ADS  Google Scholar 

  6. Guatteri, M., Spudich, P. & Beroza, G. C. Inferring rate and state friction parameters from a rupture model of the 1995 Hyogo-ken Nanbu (Kobe) Japan earthquake. J. Geophys. Res. 106, 26511–26521 (2001)

    Article  ADS  Google Scholar 

  7. Rice, J. R., Sammis, C. G. & Parsons, R. Off-fault secondary failure induced by a dynamic slip-pulse. Bull. Seismol. Soc. Am. 95, 109–134 (2005)

    Article  Google Scholar 

  8. Abercrombie, R. E. & Rice, J. R. Can observations of earthquake scaling constrain slip weakening? Geophys. J. Int. 162, 406 (2005)

    Article  ADS  Google Scholar 

  9. Heaton, T. H. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter. 64, 1–20 (1990)

    Article  ADS  Google Scholar 

  10. Kanamori, H. & Heaton, T. H. in GeoComplexity and the Physics of Earthquakes (eds Rundle, J. B., Turcotte, D. L. & Klein, W.) (American Geophysical Union, Washington DC, 2000)

    Google Scholar 

  11. Chester, F. M. & Logan, J. M. Composite planar fabric of gouge from the Punchbowl fault, California. J. Struct. Geol. 9, 621–634 (1987)

    Article  ADS  Google Scholar 

  12. Chester, F. M., Chester, J. S., Kirschner, D. L., Schulz, S. E. & Evans, J. P. in Rheology and Deformation in the Lithosphere at Continental Margins (eds Karner, G. D., Taylor, B., Driscoll, N. W. & Kohlstedt, D. L.) (Columbia Univ. Press, New York, 2004)

    Google Scholar 

  13. Kanamori, H. Mechanics of earthquakes. Annu. Rev. Earth Planet. Sci. 22, 207–237 (1994)

    Article  ADS  Google Scholar 

  14. Venkataraman, A. & Kanamori, H. Observational constraints on the fracture energy of subduction zone earthquakes. J. Geophys. Res. 109, B05302 (2004)

    ADS  Google Scholar 

  15. Beeler, N. M., Wong, T. F. & Hickman, S. H. On the expected relationships among apparent stress, static stress drop, effective shear fracture energy, and efficiency. Bull. Seismol. Soc. Am. 93, 1381–1389 (2003)

    Article  Google Scholar 

  16. Brace, W. F. & Walsh, J. B. Some direct measurements of the surface energy of quartz and orthoclase. Am. Mineral. 47, 1111–1122 (1962)

    CAS  Google Scholar 

  17. Friedman, M., Handin, J. & Alani, G. Fracture-surface energy of rocks. Int. J. Rock Mech. Mining Sci. 9, 757–766 (1972)

    Article  Google Scholar 

  18. Wong, T. F. in Earthquake Source Mechanics (eds Das, S., Boatwright, J. & Scholz, C. H.) 1–12 (American Geophysical Union, Washington DC, 1986)

    Google Scholar 

  19. Olgaard, D. L. & Brace, W. F. The microstructure of gouge from a mining-induced seismic shear zone. Int. J. Rock Mech. Mining Sci. 20, 11–19 (1983)

    Article  Google Scholar 

  20. McGarr, A., Spottiswoode, S. M., Gay, N. C. & Ortlepp, W. D. Observations relevant to seismic driving stress, stress drop, and efficiency. J. Geophys. Res. 84, 2251–2261 (1979)

    Article  ADS  Google Scholar 

  21. Yund, R. A., Blanpied, M. L., Tullis, T. E. & Weeks, J. D. Amorphous material in high strain experimental fault gouges. J. Geophys. Res. 95, 15589–15602 (1990)

    Article  ADS  Google Scholar 

  22. Scholz, C. H., Dawers, N. H., Yu, J. Z., Anders, M. H. & Cowie, P. A. Fault growth and fault scaling laws: Preliminary results. J. Geophys. Res. 98, 21951–21961 (1993)

    Article  ADS  Google Scholar 

  23. Andrews, D. J. A fault constitutive relation accounting for thermal pressurization of pore fluid. J. Geophys. Res. 107, ESE15-1–8, art. no. 2363 (2002)

    Article  Google Scholar 

  24. Wilson, J. E., Chester, J. S. & Chester, F. M. Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas System, California. J. Struct. Geol. 25, 1855–1873 (2003)

    Article  ADS  Google Scholar 

  25. Chester, J. S., Kronenberg, A. K., Chester, F. M. & Guillemette, R. N. Characterization of natural slip surfaces relevant to earthquake mechanics. Eos 84(46) (2003)

  26. Wilson, B., Dewers, T., Reches, Z. & Brune, J. Particle size and energetics of gouge from earthquake rupture zones. Nature 434, 749–752 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Bonnet, E. et al. Scaling of fracture systems in geological media. Rev. Geophys. 39, 347–383 (2001)

    Article  ADS  Google Scholar 

  28. Underwood, E. E. Quantitative Stereology (Addison Wesley, Reading, Massachusetts, 1970)

    Google Scholar 

  29. Sibson, R. H. Thickness of the seismic slip zone. Bull. Seismol. Soc. Am. 93, 1169–1178 (2003)

    Article  Google Scholar 

  30. Evans, J. P., Shipton, Z. K., Pachell, M. A., Lim, S. J. & Robeson, K. in Proc. 3rd Conf. on Tectonic Problems of the San Andreas Fault System (eds Bokelmann, G. & Kovach, R. L.) 67–81 (Stanford Univ. Publ., 2000)

    Google Scholar 

Download references

Acknowledgements

We thank P. Spudich , T. Heaton and N. Beeler for discussions and review of an early version of this paper, and J. Jenson for advice regarding data analysis. The TEM work was performed in the Microscopy and Imaging Center of Texas A&M University and Z. Luo is acknowledged for his assistance. This research was supported by the Southern California Earthquake Center through a NSF and USGS Cooperative Agreement (J.S.C.), US National Science Foundation (J.S.C. and F.M.C.), and US Geological Survey (J.S.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith S. Chester.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chester, J., Chester, F. & Kronenberg, A. Fracture surface energy of the Punchbowl fault, San Andreas system. Nature 437, 133–136 (2005). https://doi.org/10.1038/nature03942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03942

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing