Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The search for a topographic signature of life

Abstract

Landscapes are shaped by the uplift, deformation and breakdown of bedrock and the erosion, transport and deposition of sediment. Life is important in all of these processes. Over short timescales, the impact of life is quite apparent: rock weathering, soil formation and erosion, slope stability and river dynamics are directly influenced by biotic processes that mediate chemical reactions, dilate soil, disrupt the ground surface and add strength with a weave of roots. Over geologic time, biotic effects are less obvious but equally important: biota affect climate, and climatic conditions dictate the mechanisms and rates of erosion that control topographic evolution. Apart from the obvious influence of humans, does the resulting landscape bear an unmistakable stamp of life? The influence of life on topography is a topic that has remained largely unexplored. Erosion laws that explicitly include biotic effects are needed to explore how intrinsically small-scale biotic processes can influence the form of entire landscapes, and to determine whether these processes create a distinctive topography.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An explanation for the origin of ridges and valleys.
Figure 2: Shaded relief images derived from airborne laser swath mapping (ALSM) data.
Figure 3: Hillslopes on which soil formation appears to be driven entirely by abiotic processes.
Figure 4: Links among tectonics, climate, erosion and topography at convergent plate boundaries.
Figure 5: Hypothetical frequency distributions of landform properties for the present Earth and an abiotic Earth.

Similar content being viewed by others

References

  1. Toy, T. J., Foster, G. R. & Renard, K. G. Soil Erosion: Processes, Prediction, Measurement, and Control (Wiley, New York, 2002)

    Google Scholar 

  2. Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins (Cambridge Univ. Press, Cambridge, UK, 1997)

    MATH  Google Scholar 

  3. Howard, A. D. in Incised River Channels (eds Darby, S. E. & Simons, A.) 277–299 (Wiley, New York, 1999)

    Google Scholar 

  4. Roering, J. J., Almond, P., Tonkin, P. & McKean, J. Constraining climatic controls on hillslope dynamics using a coupled model for the transport of soil and tracers: Application to loess-mantled hillslopes, South Island, New Zealand. J. Geophys. Res. 109, doi:10.1029/2003JF000034 (2004)

  5. Kirkby, M. J. Modelling the links between vegetation and landforms. Geomorphology 13, 319–335 (1995)

    Article  ADS  Google Scholar 

  6. Collins, D. B. G., Bras, R. L. & Tucker, G. E. Modelling the effects of vegetation-erosion coupling on landscape evolution. J. Geophys. Res. 109, doi:10.1029/2002JF000028 (2004)

  7. Istanbulluoglu, E. & Bras, R. L. Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography. J. Geophys. Res. 110, F02012, doi:10.1029/2004JF000249 (2005)

    ADS  Google Scholar 

  8. Willgoose, G., Bras, R. L. & Rodriguez-Iturbe, I. A coupled channel network growth and hillslope evolution model; 1, Theory. Wat. Resour. Res. 27, 1671–1684 (1991)

    Article  ADS  Google Scholar 

  9. Howard, A. D. A detachment-limited model of drainage basin evolution. Wat. Resour. Res. 30, 2261–2285 (1994)

    Article  ADS  Google Scholar 

  10. Tucker, G. E. & Bras, R. L. Hillslope processes, drainage density, and landscape morphology. Wat. Resour. Res. 34, 2751–2764 (1998)

    Article  ADS  Google Scholar 

  11. Beaumont, C. P., Fullsack, P. & Hamilton, J. in Thrust Tectonics (ed. McClay, K. R.) 1–18 (Chapman and Hall, New York, 1992)

    Book  Google Scholar 

  12. Tucker, G. E. & Slingerland, R. L. Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study. J. Geophys. Res. 99, 12229–12243 (1994)

    Article  ADS  Google Scholar 

  13. van der Beek, P. & Braun, J. Numerical modelling of landscape evolution on geological time-scales: A parameter analysis and comparison with the south-eastern highlands of Australia. Basin Res. 10, 49–68 (1998)

    Article  ADS  Google Scholar 

  14. Willett, S. D. Orography and orogeny: The effects of erosion on the structure of mountain belts. J. Geophys. Res. 104, 28957–28981 (1999)

    Article  ADS  Google Scholar 

  15. Tucker, G. E. & Slingerland, R. L. Drainage basin responses to climate change. Wat. Resour. Res. 33, 2031–2047 (1997)

    Article  ADS  Google Scholar 

  16. Kirkby, M. J. in Slopes: Form and Process (ed. Brunsden, D.) 15–30 (Spec. Publ. 3, Institute of British Geographers, London, 1971)

    Google Scholar 

  17. Dietrich, W. E. et al. in Prediction in Geomorphology (eds Wilcock, P. & Iverson, V.) 103–132 (AGU Geophys. Monogr. 135, American Geophysical Union, Washington DC, 2003)

    Google Scholar 

  18. Smith, T. R. & Bretherton, F. P. Stability and the conservation of mass in drainage basin evolution. Wat. Resour. Res. 8, 1506–1529 (1972)

    Article  ADS  Google Scholar 

  19. Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 32, 151–185 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Gabet, E. M., Reichman, O. J. & Seabloom, E. W. The effects of bioturbation on soil processes and sediment transport. Annu. Rev. Earth Planet. Sci. 31, 249–273 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. The soil production function and landscape equilibrium. Nature 388, 358–361 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Ehrlich, H. L. Geomicrobiology: its significance for geology. Earth-Sci. Rev. 45, 45–60 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Newman, D. K. & Banfield, J. F. Geomicrobiology: elucidation of the molecular-scale interactions that underpin biogeochemical systems. Science 296, 1071–1077 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Roering, J. J. Soil creep and convex-upward velocity profiles: theoretical and experimental investigation. Earth Surf. Process. Landforms 29, 1597–1612 (2004)

    Article  ADS  Google Scholar 

  25. Fleming, R. W. & Johnson, A. M. Rates of seasonal creep of silty clay soil. Q. J. Eng. Geol. 8, 1–29 (1975)

    Article  Google Scholar 

  26. Heimsath, A. M., Chappell, J., Spooner, N. A. & Questiaux, D. G. Creeping soil. Geology 30, 111–114 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Roering, J. J., Kirchner, J. W. & Dietrich, W. E. Evidence for non-linear, diffusive sediment transport on hillslopes and implications for landscape morphology. Wat. Resour. Res. 35, 853–870 (1999)

    Article  ADS  Google Scholar 

  28. Furbish, D. J. & Fagherazzi, S. Stability of creeping soil and implications for hillslope evolution. Wat. Resour. Res. 37, 2607–2618 (2001)

    Article  ADS  Google Scholar 

  29. Howard, A. D. & Kerby, G. Channel changes in badlands. Geol. Soc. Am. Bull. 94, 739–752 (1983)

    Article  ADS  Google Scholar 

  30. Seidl, M. A. & Dietrich, W. E. The problem of channel erosion into bedrock. Catena Suppl. 23, 101–124 (1992)

    Google Scholar 

  31. Howard, A. D., Dietrich, W. E. & Seidl, M. A. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99, 13971–13986 (1994)

    Article  ADS  Google Scholar 

  32. Sklar, L. & Dietrich, W. E. Sediment supply, grain size and rock strength controls on rates of river incision into bedrock. Geology 29, 1087–1090 (2001)

    Article  ADS  Google Scholar 

  33. Sklar, L. & Dietrich, W. E. A mechanistic model for river incision into bedrock by saltating bedload. Water Resour. Res. 40, W06301, doi:10.1029/2003WR002496 (2004)

    Article  ADS  Google Scholar 

  34. Riquelme, R., Martinod, J., Herail, G., Darrozes, J. & Charrier, R. A geomorphological approach to determining the Neogene to Recent tectonic deformation in the Coastal Cordillera of northern Chile (Atacama). Tectonophysics 361, 255–275 (2003)

    Article  ADS  Google Scholar 

  35. Amundson, R. et al. Chemical alteration of soils on Earth as a function of precipitation: Insights into weathering processes relevant to Mars. Eos 85 (Fall Mtg Suppl.), abstr. P23B–06 (2004)

  36. Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. Stochastic processes of soil production and transport: erosion rates, topographic variation, and cosmogenic nuclides in the Oregon Coast Range. Earth Surf. Process. Landforms 26, 531–552 (2001)

    Article  ADS  CAS  Google Scholar 

  37. Heimsath, A. M., Furbish, D. & Dietrich, W. E. The illusion of diffusion: Field evidence for depth dependent sediment transport. Geology 33, 949–952 (2005)

    Article  ADS  Google Scholar 

  38. Schumm, S. A. Patterns of alluvial rivers. Annu. Rev. Earth Planet. Sci. 13, 5–27 (1985)

    Article  ADS  Google Scholar 

  39. Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian-Triassic extinction. Science 289, 1740–1743 (2000)

    Article  ADS  CAS  Google Scholar 

  40. Micheli, E. R. & Kirchner, J. W. Effects of wet meadow riparian vegetation on streambank erosion. 2. Measurements of vegetated bank strength and consequences of failure mechanics. Earth Surf. Process. Landforms 27, 687–697 (2003)

    Article  ADS  Google Scholar 

  41. Murray, A. B. & Paola, C. Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surf. Process. Landforms 28, 131–143 (2003)

    Article  ADS  Google Scholar 

  42. Leopold, L. B., Wolman, M. G. & Miller, J. P. Fluvial Processes in Geomorphology (Freeman & Co., San Francisco, 1964)

    Google Scholar 

  43. Baker, V. C. The Channels on Mars (Univ. Texas Press, Austin, 1982)

    Google Scholar 

  44. Moore, J. M., Howard, A. D., Dietrich, W. E. & Schenk, P. M. Martian layered fluvial deposits: implications for Noachian climate scenarios. Geophys. Res. Lett. 30, doi:10.1029/2003GL019002 (2003)

  45. Malin, M. C. & Edgett, K. S. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003)

    Article  ADS  CAS  Google Scholar 

  46. Bhattacharya, J. P., Payenberg, T. H. D., Lang, S. C. & Bourke, M. Dynamic river channels suggest a long-lived Noachian crater lake on Mars. Geophys. Res. Lett. 32, doi:10.1029/2005GL022747 (2005)

  47. Kleidon, A., Fraedrich, K. & Heimann, M. A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate. Clim. Change 44, 471–493 (2000)

    Article  Google Scholar 

  48. Hilley, G. E. & Strecker, M. R. Steady-state erosion of critical Coulomb wedges with applications to Taiwan and the Himalaya. J. Geophys. Res. 109, B01411, doi:10.1029/2002JB002284 (2004)

    ADS  Google Scholar 

  49. Whipple, K. X. & Meade, B. J. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state. J. Geophys. Res. 109, F01011, doi:10.1029/2003JF000019 (2004)

    Article  ADS  Google Scholar 

  50. Richards, M. A., Yang, W. S., Baumgardner, J. R. & Bunge, H. P. Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst. 2, doi:10.1029/2000GC000115 (2001)

  51. Nimmo, F. & McKenzie, D. Volcanism and tectonics on Venus. Annu. Rev. Earth Planet. Sci. 26, 23–51 (1998)

    Article  ADS  CAS  Google Scholar 

  52. Chyba, C. F. Rethinking Earth's early atmosphere. Science 308, 962–963 (2005)

    Article  Google Scholar 

  53. Baker, V. R. Water and the martian landscape. Nature 412, 228–236 (2001)

    Article  ADS  CAS  Google Scholar 

  54. Craddock, R. A. & Howard, A. D. The case for rainfall on a warm, wet early Mars. J. Geophys. Res. 107, doi:10.1029/2001JE001505 (2002)

  55. Irwin, R. P., Craddock, R. A. & Howard, A. D. Interior channels in Martian valley networks: Discharge and runoff production. Geology 33, 489–492 (2005)

    Article  ADS  Google Scholar 

  56. Howard, A. D., Moore, J. M. & Irwin, R. P. III An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, doi:10.1029/2005JE002459 (2005)

  57. Head, J. W. et al. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434, 346–351 (2005)

    Article  ADS  CAS  Google Scholar 

  58. Piqueux, S., Byrne, S. & Richardson, M. I. Sublimation of Mars's southern seasonal CO2 ice cap and the formation of spiders. J. Geophys. Res. 108, doi:10.1029/2002JE002007 (2003)

  59. Byrne, S. & Ingersoll, A. P. A sublimation model for Martian South Polar ice features. Science 299, 1051–1053 (2003)

    Article  ADS  CAS  Google Scholar 

  60. Tomasko, M. G. et al. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438, 765–778 (2005)

    Article  ADS  CAS  Google Scholar 

  61. Willgoose, G. A statistic for testing the elevation characteristics of landscape simulation models. J. Geophys. Res. 99, 13987–13996 (1994)

    Article  ADS  Google Scholar 

  62. Stock, J. D. & Dietrich, W. E. Valley incision by debris flows: evidence of a topographic signature. Wat. Resour. Res. 39, 1089, doi:10.1029/2001WR001057 (2003)

    Article  ADS  Google Scholar 

  63. McEwen, A. et al. MRO's High Resolution Imaging Science Experiment (HiRISE): Science expectations. Sixth Int. Conf. on Mars 3217 (2003); http://www.lpi.usra.edu/meetings/sixthmars2003/ (2003).

  64. Yoo, K., Amundson, R., Heimsath, A. M. & Dietrich, W. E. Process-based model linking pocket gopher (Thomomys bottae) activity to sediment transport and soil thickness. Geology 33, 917–920 (2005)

    Article  ADS  Google Scholar 

  65. Gabet, E. & Dunne, T. A stochastic sediment delivery model for a steep Mediterranean landscape. Wat. Resour. Res. 39, 1237, doi:10.1029/2003WR002341 (2003)

    Article  ADS  Google Scholar 

  66. Roering, J. J. & Gerber, M. Fire and the evolution of steep, soil-mantled landscapes. Geology 33, 349–352 (2005)

    Article  ADS  Google Scholar 

  67. Ahnert, F. in L'evolution des Versants (ed. Macar, P.) 23–41 (Univ. Liege, Liege, France, 1967)

    Google Scholar 

  68. Cox, N. J. On the relationship between bedrock lowering and regolith thickness. Earth Surf. Process. Landforms 5, 271–274 (1980)

    Article  Google Scholar 

  69. Anderson, R. S. Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology 46, 35–58 (2002)

    Article  ADS  Google Scholar 

  70. Culling, W. E. H. Analytical theory of erosion. J. Geol. 68, 336–344 (1960)

    Article  ADS  Google Scholar 

  71. Perron, J. T., Dietrich, W. E., Howard, A. D., McKean, J. A. & Pettinga, J. Ice-driven creep on Martian debris slopes. Geophys. Res. Lett. 30, 1747, doi:10.1029/2003GL017603 (2003)

    Article  ADS  Google Scholar 

  72. Iverson, R. M. Unsteady, nonuniform landslide motion, 2. Linearized theory and the kinematics of transient-response. J. Geol. 94, 349–364 (1986)

    Article  ADS  Google Scholar 

  73. Densmore, A. L., Ellis, M. A. & Anderson, R. S. Landsliding and the evolution of normal-fault-bounded mountains. J. Geophys. Res. 103, 15203–15219 (1998)

    Article  ADS  Google Scholar 

  74. Iverson, R. M. Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. 110, doi:10.1029/2004JF000268 (2005)

  75. Stock, J. D. Incision of Steepland Valleys by Debris Flows Ph.D. thesis, Univ. California, Berkeley (2003)

    Google Scholar 

  76. MacGregor, K. R., Anderson, R. S., Anderson, S. P. & Waddington, E. D. Numerical simulations of glacial-valley longitudinal profile evolution. Geology 28, 1031–1034 (2000)

    Article  ADS  Google Scholar 

  77. Hildes, D. H. D., Clarke, G. K. C., Flowers, G. E. & Marshall, S. J. Subglacial erosion and englacial sediment transport modelled for North American ice sheets. Quat. Sci. Rev. 23, 409–430 (2004)

    Article  ADS  Google Scholar 

  78. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941)

    Google Scholar 

  79. Werner, B. T. A steady state model of wind-blown sand transport. J. Geol. 98, 1–17 (1990)

    Article  ADS  Google Scholar 

  80. McEwan, I. K. The Physics of Sand Transport by Wind Ph.D. thesis, Univ. Aberdeen (1991)

    Google Scholar 

  81. Anderson, R. S. Erosion profiles due to particles entrained by wind: Application of an eolian sediment-transport model. Geol. Soc. Am. Bull. 97, 1270–1278 (1986)

    Article  ADS  Google Scholar 

  82. Lancaster, N. & Baas, A. Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California. Earth Surf. Process. Landforms 23, 69–82 (1998)

    Article  ADS  Google Scholar 

  83. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 106, 1373–1400 (2001)

    Article  ADS  CAS  Google Scholar 

  84. Kump, L. R., Brantley, S. L. & Arthur, M. A. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000)

    Article  ADS  CAS  Google Scholar 

  85. Kasting, J. F. & Catling, D. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429–463 (2003)

    Article  ADS  CAS  Google Scholar 

  86. Brasier, M., Green, O., Lindsay, J. & Steele, A. Earth's oldest (3.5 Ga) fossils and the 'Early Eden hypothesis': questioning the evidence. Orig. Life Evol. Biosph. 34, 257–269 (2004)

    Article  ADS  Google Scholar 

  87. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)

    Article  ADS  CAS  Google Scholar 

  88. Tian, F., Toon, O. B., Pavlov, A. A. & De Sterck, H. A hydrogen-rich early Earth atmosphere. Science 308, 1014–1017 (2005)

    Article  ADS  CAS  Google Scholar 

  89. Schrag, D. P., Berner, R. A., Hoffman, P. F. & Halverson, G. P. On the initiation of snowball Earth. Geochem. Geophys. Geosyst. 3, doi:10.1029/2001GC00219 (2002)

  90. Edmond, J. M. & Huh, Y. Non-steady carbonate recycling and implications for the evolution of atmospheric PCO2 . Earth Planet. Sci. Lett. 216, 125–139 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Many colleagues offered advice and direction in preparation of this review, especially I. Fung, D. Schrag, N. Sleep, L. Sklar and L. Kump. A. Howard, D. Furbish, M. Power and G. Hilley gave comments on earlier drafts of the paper. M. Gabet made several suggestions. A. Kleidon shared unpublished data. N. Snyder and the NSF National Center for Airborne Laser Mapping provided the topographic data for Death Valley. Aspects of this work were supported by the NSF National Center for Earth Surface Dynamics, the NSF Graduate Research Fellowship Program, and NASA (for work in the Atacama Desert with R. Amundson).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Dietrich.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, W., Perron, J. The search for a topographic signature of life. Nature 439, 411–418 (2006). https://doi.org/10.1038/nature04452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04452

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing