Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear factor-κB in cancer development and progression

Abstract

Nuclear factor-κB (NF-κB) transcription factors and the signalling pathways that activate them are central coordinators of innate and adaptive immune responses. More recently, it has become clear that NF-κB signalling also has a critical role in cancer development and progression. NF-κB provides a mechanistic link between inflammation and cancer, and is a major factor controlling the ability of both pre-neoplastic and malignant cells to resist apoptosis-based tumour-surveillance mechanisms. NF-κB might also regulate tumour angiogenesis and invasiveness, and the signalling pathways that mediate its activation provide attractive targets for new chemopreventive and chemotherapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NF-κB activation, and the interaction between inflammatory and malignant cells, can promote malignant conversion and progression.
Figure 2: Microbial pathogens and tissue necrosis lead to activation of NF-κB and other transcription factors in cells that express pattern-recognition receptors.
Figure 3: TNFR1 signalling controls cell survival and death by through an interplay between NF-κB and JNK.

Similar content being viewed by others

References

  1. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 248, 171–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Roder, D. M. The epidemiology of gastric cancer. Gastric Cancer 5 (Suppl. 1), 5–11 (2002).

    Article  PubMed  Google Scholar 

  5. Ekbom, A. Risk of cancer in ulcerative colitis. J. Gastrointest. Surg. 2, 312–313 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Dhala, A., Pinsker, K. & Prezant, D. J. Respiratory health consequences of environmental tobacco smoke. Med. Clin. North Am. 88, 1535–1552, xi (2004).

    Article  PubMed  Google Scholar 

  7. Greten, F. R. & Karin, M. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol. 5, 749–759 (2005).

    Article  Google Scholar 

  8. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Li, Q., Withoff, S. & Verma, I. M. Inflammation-associated cancer: NF-κB is the lynchpin. Trends Immunol. 26, 318–325 (2005).

    Article  PubMed  Google Scholar 

  11. Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    Article  CAS  Google Scholar 

  12. Gilmore, T. D. The Re1/NF-κB/IκB signal transduction pathway and cancer. Cancer Treat. Res. 115, 241–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  14. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Nizet, V., Lawrence, T. & Karin, M. Innate immunity gone awry: mechanisms linking microbial infections to chronic inflammatory disorders and cancer. Cell 124, 823–835 (2006).

    Article  PubMed  Google Scholar 

  16. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nature Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  17. Sun, J. et al. Sequence variants in Toll-like receptor gene cluster (TLR6–TLR1–TLR10) and prostate cancer risk. J. Natl Cancer Inst. 97, 525–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398–402 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Arnott, C. H. et al. Tumour-necrosis factor-α mediates tumour promotion via a PKCα- and AP-1-dependent pathway. Oncogene 21, 4728–4738 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Lind, M. H. et al. Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-κB inhibition. Proc. Natl Acad. Sci. USA 101, 4972–4977 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Balkwill, F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 13, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Oshima, M., Oshima, H., Matsunaga, A. & Taketo, M. M. Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-α-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Res. 65, 9147–9151 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Z. -G., Hu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis, while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α induced cell death. Science 274, 782–784 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNFα-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Wang, C.-Y., Mayo, M. W. & Baldwin, A. S. Jr. TNF-α and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Makris, C. et al. Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 5, 969–979 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-κB signals induce the expression of c-FLIP. Mol. Cell. Biol. 21, 5299–5305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nature Immunol. 3, 221–227 (2002).

    Article  CAS  Google Scholar 

  31. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Lavon, I. et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-κB activation. Nature Med. 6, 573–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, L. W. et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia–reperfusion. Nature Med. 9, 575–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Okayasu, I., Ohkusa, T., Kajiura, K., Kanno, J. & Sakamoto, S. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39, 87–92 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Becker, C. et al. TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Mauad, T. H. et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am. J. Pathol. 145, 1237–1245 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zucca, E., Bertoni, F., Roggero, E. & Cavalli, F. The gastric marginal zone B-cell lymphoma of MALT type. Blood 96, 410–419 (2000).

    CAS  PubMed  Google Scholar 

  39. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lucas, P. C. et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-κB signaling pathway. J. Biol. Chem. 276, 19012–19019 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Thome, M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nature Rev. Immunol. 4, 348–359 (2004).

    Article  CAS  Google Scholar 

  42. van Hogerlinden, M., Rozell, B. L., Ahrlund-Richter, L. & Toftgard, R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-κB signaling. Cancer Res. 59, 3299–3303 (1999).

    CAS  PubMed  Google Scholar 

  43. van Hogerlinden, M., Auer, G. & Toftgard, R. Inhibition of Rel/nuclear factor-κB signaling in skin results in defective DNA damage-induced cell cycle arrest and Ha-ras- and p53-independent tumor development. Oncogene 21, 4969–4977 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Dajee, M. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Zhang, J. Y., Green, C. L., Tao, S. & Khavari, P. A. NF-κB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev. 18, 17–22 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karin, M. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483–16486 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Pham, C. G. et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Chang, L. et al. The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIP(L) turnover. Cell 124, 601–613 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Park, J. S. et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279, 7370–7377 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Holla, V. R. et al. Prostaglandin E2 regulates the complement inhibitor CD55/decay-accelerating factor in colorectal cancer. J. Biol. Chem. 280, 476–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Garkavtsev, I. et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428, 328–332 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Joyce, D. et al. NF-κB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev. 12, 73–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Cao, Y. et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107, 763–775 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H. & Karin, M. Inhibition of NF-κB in cancer cells converts inflammation- induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Karin, M., Yamamoto, Y. & Wang, Q. M. The IKK NF-κB system: a treasure trove for drug development. Nature Rev. Drug Discov. 3, 17–26 (2004).

    Article  CAS  Google Scholar 

  59. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109 (suppl.), S81–S96 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Gilmore, T. D. The Rel/NF-κB signal transduction pathway: introduction. Oncogene 18, 6842–6844 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Rothwarf, D. M. & Karin, M. The NF-κB activation pathway: a paradigm in information transfer from membrane to nucleus. Sci. STKE 1999, RE1 (1999).

    CAS  PubMed  Google Scholar 

  62. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Werner, S. L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Park, J. M. et al. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis — CREB and NF-κB as key regulators. Immunity 23, 319–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Covert, M. W., Leung, T. H., Gaston, J. E. & Baltimore, D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309, 1854–1857 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Neri, A. et al. B-cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-κB p50. Cell 67, 1075–1087 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Demicco, E. G. et al. RelB/p52 NF-κB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IκB-α expression and promote carcinogenesis of the mammary gland. Mol. Cell. Biol. 25, 10136–10147 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kato, T. Jr., Delhase, M., Hoffmann, A. & Karin, M. CK2 Is a c-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol. Cell 12, 829–839 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006). https://doi.org/10.1038/nature04870

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04870

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing