Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite

Abstract

From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms1 and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis2. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding ‘higher’ Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-μl environment can be.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Source and composition of the bacterial community analysed.
Figure 2: Model of nutritional symbiosis-relevant metabolism by Nasutitermes P3 luminal bacteria.

Similar content being viewed by others

References

  1. Sugimoto, A., Bignell, D. E. & Macdonald, J. A. in Termites: Evolution, Sociality, Symbioses, Ecology (eds Abe, T. Bignell, D. E. & Higashi, M.) 409–435 (Kluwer Academic, Dordrecht, 2000)

    Book  Google Scholar 

  2. Tokuda, G. & Watanabe, H. Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett. 3, 336–339 (2007)

    Article  CAS  Google Scholar 

  3. Brune, A. in The Prokaryotes Vol. 1 (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) 439–474 (Springer, New York, 2006)

    Book  Google Scholar 

  4. Kambhampati, S. & Eggleton, P. in Termites: Evolution, Sociality, Symbioses, Ecology (eds Abe, T. Bignell, D. E. & Higashi, M.) 1–24 (Kluwer Academic, Dordrecht, 2000)

    Book  Google Scholar 

  5. Tokuda, G. et al. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol. Ecol. 13, 3219–3228 (2004)

    Article  CAS  Google Scholar 

  6. Brennan, Y. et al. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70, 3609–3617 (2004)

    Article  CAS  Google Scholar 

  7. McHardy, A. C., Martin, H. G., Tsirigos, A., Hugenholtz, P. & Rigoutsos, I. Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods 4, 63–72 (2007)

    Article  CAS  Google Scholar 

  8. Brune, A., Emerson, D. & Breznak, J. A. The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61, 2681–2687 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Davies, G. J. & Henrissat, B. Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. Biochem. Soc. Trans. 30, 291–297 (2002)

    Article  CAS  Google Scholar 

  10. Breznak, J. A. & Brune, A. Role of microorganisms in the digestion of lignocellulose in termites. Annu. Rev. Entomol. 39, 453–487 (1994)

    Article  CAS  Google Scholar 

  11. Taylor, L. E. et al. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J. Bacteriol. 188, 3849–3861 (2006)

    Article  CAS  Google Scholar 

  12. Xie, G. et al. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii . Appl. Environ. Microbiol. 73, 3536–3546 (2007)

    Article  CAS  Google Scholar 

  13. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Qi, M. et al. Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J. Bacteriol. 187, 3739–3751 (2005)

    Article  CAS  Google Scholar 

  17. Odelson, D. A. & Breznak, J. A. Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl. Environ. Microbiol. 49, 614–621 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vignais, P. M. & Colbeau, A. Molecular biology of microbial hydrogenases. Curr. Issues Mol. Biol. 6, 159–188 (2004)

    CAS  PubMed  Google Scholar 

  19. Breznak, J. A. & Switzer, J. M. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52, 623–630 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pester, M. & Brune, A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J. 1, 551–565 (2007)

    Article  CAS  Google Scholar 

  21. Ragsdale, S. W. The eastern and western branches of the Wood/Ljungdahl pathway: how the East and West were won. Biofactors 6, 3–11 (1997)

    Article  CAS  Google Scholar 

  22. Pester, M. & Brune, A. Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ. Microbiol. 8, 1261–1270 (2006)

    Article  CAS  Google Scholar 

  23. Prestwich, G. D., Bentley, B. L. & Carpenter, E. J. Nitrogen sources for neotropical nasute termites: Fixation and selective foraging. Oecologia 46, 397–401 (1980)

    Article  ADS  CAS  Google Scholar 

  24. Ohkuma, M., Noda, S. & Kudo, T. Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl. Environ. Microbiol. 65, 4926–4934 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Potrikus, C. J. & Breznak, J. A. Anaerobic degradation of uric acid by gut bacteria of termites. Appl. Environ. Microbiol. 40, 125–132 (1980)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brune, A. & Friedrich, M. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3, 263–269 (2000)

    Article  CAS  Google Scholar 

  27. Beckwith, T. & Light, S. The spirals within the termite gut for class use. Science 66, 656–657 (1927)

    Article  ADS  CAS  Google Scholar 

  28. Robertson, D. E. et al. Exploring nitrilase sequence space for enantioselective catalysis. Appl. Environ. Microbiol. 70, 2429–2436 (2004)

    Article  CAS  Google Scholar 

  29. Short, J. M., Fernandez, J. M., Sorge, J. A. & Huse, W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 16, 7583–7600 (1988)

    Article  CAS  Google Scholar 

  30. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998)

    Article  CAS  Google Scholar 

  31. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998)

    Article  CAS  Google Scholar 

  32. Markowitz, V. M. et al. An experimental metagenome data management and analysis system. Bioinformatics 22, e359–e367 (2006)

    Article  CAS  Google Scholar 

  33. Markowitz, V. M. et al. The integrated microbial genomes (IMG) system. Nucleic Acids Res. 34, D344–D348 (2006)

    Article  CAS  Google Scholar 

  34. Marchler-Bauer, A., Panchenko, A. R., Ariel, N. & Bryant, S. H. Comparison of sequence and structure alignments for protein domains. Proteins 48, 439–446 (2002)

    Article  CAS  Google Scholar 

  35. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2 953–971 doi: 10.1038/nprot.2007.131 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Wei, J. et al. Global proteome discovery using an online three-dimensional LC-MS/MS. J. Proteome Res. 4, 801–808 (2005)

    Article  CAS  Google Scholar 

  37. DeSantis, T. Z. et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 34, W394–W399 (2006)

    Article  CAS  Google Scholar 

  38. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006)

    Article  CAS  Google Scholar 

  39. Stamatakis, A., Ludwig, T. & Meier, H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463 (2005)

    Article  CAS  Google Scholar 

  40. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504 (2002)

    Article  CAS  Google Scholar 

  41. Schloss, P. D. & Handelsman, J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 1501–1506 (2005)

    Article  CAS  Google Scholar 

  42. Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. Lond. B 345, 101–118 (1994)

    Article  ADS  CAS  Google Scholar 

  43. de Caprariis, P., Lindemann, R. & Collins, C. A method for determining optimum sample size in species diversity studies. J. Int. Assoc. Math. Geol. 8, 575–581 (1976)

    Article  Google Scholar 

  44. Smith, E. P. & van Belle, G. Nonparametric estimation of species richness. Biometrics 40, 119–129 (1984)

    Article  Google Scholar 

  45. Krebs, C. J. Ecological Methodology (Harper & Row, New York, 1989)

    Google Scholar 

  46. Efron, B. & Tibshirani, R. An Introduction to the Bootstrap (Chapman & Hall, New York, 1993)

    Book  Google Scholar 

  47. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  CAS  Google Scholar 

  48. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004)

    Article  CAS  Google Scholar 

  49. Austin, J. W., Szalanski, A. L. & Cabrera, B. J. Phylogenetic analysis of the subterranean termite family Rhinotermitidae (Isoptera) by using the mitochondrial cytochrome oxidase II gene. Ann. Entomol. Soc. Am. 97, 548–555 (2004)

    Article  CAS  Google Scholar 

  50. Ohkuma, M. et al. Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol. Phylogenet. Evol. 31, 701–710 (2004)

    Article  CAS  Google Scholar 

  51. Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316 (1991)

    Article  CAS  Google Scholar 

  52. Davies, D. G. & Geesey, G. G. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continous culture. Appl. Environ. Microbiol. 61, 860–867 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Johnston, D. in Handbook of Food Enzymology (eds Whitaker, J. R., Voragen, A. G. J. & Wong, D. W. S.) 761–769 (Marcel Dekker Inc., New York, 2002)

    Google Scholar 

  54. Stahlberg, J., Johansson, G. & Pettersson, G. Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim. Biophys. Acta 1157, 107–113 (1993)

    Article  CAS  Google Scholar 

  55. Wood, T. Preparation of crystalline, amorphous and dyed cellulase substrate. Methods Enzymol. 160, 19–25 (1988)

    Article  CAS  Google Scholar 

  56. von Mering, C. et al. STRING 7—recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 35, D358–D362 (2007)

    Article  CAS  Google Scholar 

  57. Marchler-Bauer, A. & Bryant, S. H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W331 (2004)

    Article  CAS  Google Scholar 

  58. Marchler-Bauer, A. et al. CDD: a conserved domain database for protein classification. Nucleic Acids Res. 33, D192–D196 (2005)

    Article  CAS  Google Scholar 

  59. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988)

    Article  CAS  Google Scholar 

  60. Apweiler, R. et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29, 37–40 (2001)

    Article  CAS  Google Scholar 

  61. Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853–1858 (1998)

    Article  ADS  CAS  Google Scholar 

  62. Chenna, R. et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500 (2003)

    Article  CAS  Google Scholar 

  63. Bates, P. A., Kelley, L. A., MacCallum, R. M. & Sternberg, M. J. E. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins Struct. Funct. Genet. 45, 39–46 (2001)

    Article  Google Scholar 

  64. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–28 (1996)

    Article  Google Scholar 

  65. Lilburn, T. G. et al. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495–2498 (2001)

    Article  CAS  Google Scholar 

  66. Sturn, A., Quackenbush, J. & Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank production and sequencing teams at Verenium and the Joint Genome Institute for their expertise, J. Mata for morphological identifications, L. Christoffersen for logistic and permitting support, and our laboratory colleagues for their comments during manuscript preparation. This research was supported in part by the National Science Foundation, the National Institutes of Health, Caltech, and the Lawrence Berkeley National Laboratory. The sequencing for the project was provided through the US Department of Energy (DOE) Community Sequencing Program (http://www.jgi.doe.gov/CSP/index.html). This work was performed, in part, under the auspices of the DOE Office of Science, Biological and Environmental Research Program, University of California, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.

Author Contributions F.W., P.H., E.J.M., D.E.R., E.M.R. and J.R.L. performed project planning, coordination, execution and facilitation. M.H., C.M., L.G.A. and G.T. undertook field research planning, permits, logistics and station management. F.W., M.C., M.H., C.M., L.G.A. and J.R.L. conducted field collection and sample preparation. M.C., G.D., N.A., J.M. and C.C. performed nucleic acid purification and library construction. D.P. and K.B. carried out assemblies. A.S. conducted gene prediction and annotation. E.S. undertook data processing and loading into IMG/M. N.I. and N.C.K. performed metabolic reconstruction. A.C.M. and I.R. carried out binning. N.M. conducted fosmid annotation and manual curation. M.G., J.T.S. and B.D.G. performed proteomics and enzyme activities. F.W., P.L., V.K., D.D., E.K., E.G.M., E.A.O. and X.Z. carried out phylogenetic analyses. H.G.M. made accumulation curves, diversity estimates, statistical test for gene-centric analysis. P.L., T.H.R. and J.R.L. performed glycoside hydrolase bioinformatics. R.S. and S.G.T. constructed hypothetical gene families. N.I. and P.H. were responsible for hydrogenases. E.G.M., E.A.O., X.Z. and J.R.L. performed C1-pathway and N-metabolic reconstruction. M.P. carried out sensory transduction protein analysis. F.W., P.L., M.G., T.H.R., J.T.S., P.H., N.I., R.S., S.G.T., M.P. and J.R.L. undertook manuscript preparation.

This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under accession number ABDH00000000; this first version is ABDH01000000. The COII gene from the termite host is deposited under accession number EU236539, and 16S rRNA gene sequences are deposited under the accession numbers EF453758–EF455009 and EU024891–EU024927. The subcloned cellulase gene sequences are deposited under the accession numbers EF428062–EF428109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared R. Leadbetter.

Ethics declarations

Competing interests

Several authors are affiliated with businesses with commercial interests in lignocellulose decay. Verenium Corporation has commercial interests in enzymes associated with lignocellulose decay.

Supplementary information

Supplementary Information

The file contains Supplementary Materials and Methods, Supplementary Tables S1-S11 and Supplementary Figures S1-S23 with Legends. (PDF 10773 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warnecke, F., Luginbühl, P., Ivanova, N. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565 (2007). https://doi.org/10.1038/nature06269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06269

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing