Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The quantum internet

Abstract

Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum networks.
Figure 2: Elements of cavity QED.
Figure 3: Fundamentals of the DLCZ protocol.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2000).

    MATH  Google Scholar 

  2. Zoller, P. et al. Quantum information processing and communication. Strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D 36, 203–228 (2005).

    Article  CAS  ADS  Google Scholar 

  3. Bennett, C. H., Brassard, G. & Ekert, A. K. Quantum cryptography. Sci. Am. 267 (4), 50–57 (1992).

    Article  Google Scholar 

  4. Bouwmeester, D., Ekert, A. & Zeilinger, A. (eds) The Physics of Quantum Information (Springer, Berlin, 2000).

    Book  Google Scholar 

  5. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  CAS  ADS  Google Scholar 

  6. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  CAS  ADS  Google Scholar 

  7. Preskill, J. P. Plug-in quantum software. Nature 402, 357–358 (1999).

    Article  CAS  ADS  Google Scholar 

  8. Copsey, D. et al. Toward a scalable, silicon-based quantum computing architecture. IEEE J. Quantum Electron. 9, 1552–1569 (2003).

    Article  CAS  Google Scholar 

  9. Illuminati, D. Light does matter. Nature Phys. 2, 803–804 (2006).

    Article  CAS  ADS  Google Scholar 

  10. Duan, L.-M., Wang, B. & Kimble, H. J. Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005).

    Article  ADS  Google Scholar 

  11. Acín, A., Cirac, J. I. & Lewenstein, M., Entanglement percolation in quantum networks. Nature Phys. 3, 256–259 (2007).

    Article  ADS  Google Scholar 

  12. Miller, R. et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B. 38, S551–S565 (2005).

    Article  CAS  Google Scholar 

  13. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  CAS  ADS  Google Scholar 

  14. Parkins, A. S., Marte, P., Zoller, P. & Kimble, H. J. Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. Phys. Rev. Lett. 71, 3095–3098 (1993).

    Article  CAS  ADS  Google Scholar 

  15. van Enk, S. J., Cirac, J. I. & Zoller, P. Photonic channels for quantum communication. Science 279, 205–208 (1998).

    Article  CAS  ADS  Google Scholar 

  16. Lukin, M. D. Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    Article  CAS  ADS  Google Scholar 

  17. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  CAS  ADS  Google Scholar 

  18. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

    Article  CAS  ADS  Google Scholar 

  19. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    Article  CAS  ADS  Google Scholar 

  20. Berman, P. (ed.) Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

    Google Scholar 

  21. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007).

    Article  CAS  ADS  Google Scholar 

  22. Walther, H. Quantum optics of single atoms. Fortschr. Phys. 52, 1154–1164 (2004).

    Article  CAS  Google Scholar 

  23. Meschede, D., Walther, H. & Mueller, G. One-atom maser. Phys. Rev. Lett. 54, 551–554 (1985).

    Article  CAS  ADS  Google Scholar 

  24. Raimond, J. M. et al. Probing a quantum field in a photon box. J. Phys. B 38, S535–S550 (2005).

    Article  CAS  Google Scholar 

  25. Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).

    Article  CAS  ADS  Google Scholar 

  26. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2004).

    Article  ADS  Google Scholar 

  27. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    Article  CAS  ADS  Google Scholar 

  28. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    Article  CAS  ADS  Google Scholar 

  29. Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).

    Article  CAS  ADS  Google Scholar 

  30. Hijlkema, M. et al. A single-photon server with just one atom. Nature Phys. 3, 253–255 (2007).

    Article  CAS  ADS  Google Scholar 

  31. Fortier, K. M., Kim, S. Y., Gibbons, M. J. Ahmadi, P. & Chapman, M. S. Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007).

    Article  ADS  Google Scholar 

  32. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science (in the press).

  33. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006).

    Article  CAS  ADS  Google Scholar 

  34. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    Article  CAS  ADS  Google Scholar 

  35. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  ADS  Google Scholar 

  36. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    Article  CAS  ADS  Google Scholar 

  37. Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

    Article  CAS  ADS  Google Scholar 

  38. Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    Article  CAS  ADS  Google Scholar 

  39. Lange, W. & Kimble, H. J. Dynamic generation of maximally entangled photon multiplets by adiabatic passage. Phys. Rev. A 61, 063817 (2000).

    Article  ADS  Google Scholar 

  40. Duan, L.-M. & Kimble, H. J. Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003).

    Article  ADS  Google Scholar 

  41. Sun, B., Chapman, M. S. & You, L. Atom–photon entanglement generation and distribution. Phys. Rev. A 69, 042316 (2004).

    Article  ADS  Google Scholar 

  42. Englund, D., Faraon, A., Zhang, B., Yamamoto, Y. & Vuckovic, J. Generation and transfer of single photons on a photonic crystal chip. Opt. Express 15, 5550–5558 (2007).

    Article  ADS  Google Scholar 

  43. Schön, C., Solano, E., Verstraete, F., Cirac, J. I. & Wolf, M. M. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).

    Article  ADS  Google Scholar 

  44. Parkins, A. S. & Kimble, H. J. Quantum state transfer between motion and light. J. Opt. B 1, 496–504 (1999).

    Article  CAS  ADS  Google Scholar 

  45. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    Article  CAS  ADS  Google Scholar 

  46. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  CAS  ADS  Google Scholar 

  47. Cerf, N. J., Leuchs, G. & Polzik, E. S. (eds) Quantum Information with Continuous Variables of Atoms and Light (World Scientific, New Jersey, 2007).

    Book  Google Scholar 

  48. Raymer, M. G., Walmsley, I. A., Mostowski, J. & Sobolewska, B. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Phys. Rev. A 32, 332–344 (1985).

    Article  CAS  ADS  Google Scholar 

  49. Chou, C.-W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    Article  CAS  ADS  Google Scholar 

  50. Laurat, J., Choi, K. S., Deng, H., Chou, C.-W. & Kimble, H. J. Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007).

    Article  CAS  ADS  Google Scholar 

  51. Laurat, J. et al. Towards experimental entanglement connection with atomic ensembles in the single excitation regime. New J. Phys. 9, 207–220 (2007).

    Article  ADS  Google Scholar 

  52. Jiang, L., Taylor, J. M. & Lukin, M. D. Fast and robust approach to long-distance quantum communication with atomic ensembles. Phys. Rev. A 76, 012301 (2007).

    Article  ADS  Google Scholar 

  53. Sangouard, N. et al. Robust and efficient quantum repeaters with atomic ensembles and linear optics. Preprint at 〈http://arxiv.org/abs/0802.1475〉 (2008).

  54. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003).

    Article  CAS  ADS  Google Scholar 

  55. Balic, V., Braje, D. A., Kolchin, P., Yin, G. Y. & Harris, S. E. Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005).

    Article  ADS  Google Scholar 

  56. van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003).

    Article  CAS  ADS  Google Scholar 

  57. Chou, C. W., Polyakov, S. V., Kuzmich, A. & Kimble, H. J. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004).

    Article  CAS  ADS  Google Scholar 

  58. Laurat, J. et al. Efficient retrieval of a single excitation stored in an atomic ensemble. Opt. Express 14, 6912–6918 (2006).

    Article  ADS  Google Scholar 

  59. Thompson, J. K., Simon, J., Loh, H. & Vuletic, V. A high-brightness source of narrowband, identical-photon pairs. Science 313, 74–77 (2006).

    Article  CAS  ADS  Google Scholar 

  60. Matsukevich, D. N. et al. Deterministic single photons via conditional quantum evolution. Phys. Rev. Lett. 97, 013601 (2006).

    Article  CAS  ADS  Google Scholar 

  61. Chen, S. et al. Deterministic and storable single-photon source based on a quantum memory. Phys. Rev. Lett. 97, 173004 (2006).

    Article  ADS  Google Scholar 

  62. Simon, J., Tanji, H., Thompson, J. K. & Vuletic, V. Interfacing collective atomic excitations and single photons. Phys.Rev. Lett. 98, 183601 (2007).

    Article  ADS  Google Scholar 

  63. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    Article  CAS  ADS  Google Scholar 

  64. Felinto, D. et al. Conditional control of the quantum states of remote atomic memories for quantum networking. Nature Phys. 2, 844–848 (2006).

    Article  CAS  ADS  Google Scholar 

  65. Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    Article  CAS  ADS  Google Scholar 

  66. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–40 (1997).

    Article  CAS  Google Scholar 

  67. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  CAS  ADS  Google Scholar 

  68. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  CAS  ADS  Google Scholar 

  69. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  70. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005).

    Article  CAS  ADS  Google Scholar 

  71. Simon, J., Tanji, H., Ghosh, S. & Vuletic, V. Single-photon bus connecting spin-wave quantum memories. Nature Phys. 3, 765–769 (2007).

    Article  CAS  ADS  Google Scholar 

  72. van Enk, S. J., Lütkenhaus, N. & Kimble, H. J. Experimental procedures for entanglement verification. Phys. Rev. A 75, 052318 (2007).

    Article  ADS  Google Scholar 

  73. Chen, Y.-A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

    Article  CAS  ADS  Google Scholar 

  74. Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003).

    Article  CAS  ADS  Google Scholar 

  75. Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

    Article  CAS  ADS  Google Scholar 

  76. Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    Article  CAS  ADS  Google Scholar 

  77. Spillane, S. M. et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005).

    Article  ADS  Google Scholar 

  78. Trupke, M. et al. Atom detection and photon production in a scalable, open, optical microcavity. Phys. Rev. Lett. 99, 063601 (2007).

    Article  CAS  ADS  Google Scholar 

  79. Park, Y.-S., Cook, A. K. & Wang, H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

    Article  CAS  ADS  Google Scholar 

  80. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  CAS  ADS  Google Scholar 

  81. Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    Article  CAS  ADS  Google Scholar 

  82. Braginsky, V. B., Gorodetsky, M. L. & Ilchenko, V. S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful for the contributions of members of the Caltech Quantum Optics Group, especially K. S. Choi, B. Dayan and R. Miller. I am indebted to J. P. Preskill and S. J. van Enk for critical insights. My research is supported by the National Science Foundation, IARPA and Northrop Grumman Space Technology.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Correspondence should be addressed to the author (hjkimble@caltech.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimble, H. The quantum internet. Nature 453, 1023–1030 (2008). https://doi.org/10.1038/nature07127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing