Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor

Abstract

In the pseudogap state of the high-transition-temperature (high-Tc) copper oxide superconductors1, angle-resolved photoemission (ARPES) measurements have seen Fermi arcs—that is, open-ended gapless sections in the large Fermi surface2,3,4,5,6,7,8—rather than a closed loop expected of an ordinary metal. This is all the more puzzling because Fermi pockets (small closed Fermi surface features) have been suggested by recent quantum oscillation measurements9,10,11,12,13,14. The Fermi arcs cannot be understood in terms of existing theories, although there is a solution in the form of conventional Fermi surface pockets associated with competing order, but with a back side that is for detailed reasons invisible to photoemission probes15. Here we report ARPES measurements of Bi2Sr2-xLa x CuO6+δ (La-Bi2201) that reveal Fermi pockets. The charge carriers in the pockets are holes, and the pockets show an unusual dependence on doping: they exist in underdoped but not overdoped samples. A surprise is that these Fermi pockets appear to coexist with the Fermi arcs. This coexistence has not been expected theoretically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fermi surface and band structure of a La-Bi2201 sample.
Figure 2: Identification of the Fermi pocket in the photoemission data.
Figure 3: Temperature dependence of the Fermi pocket.
Figure 4: Doping evolution of Fermi surface topology in La-Bi2201.

Similar content being viewed by others

References

  1. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Marshall, D. S. et al. Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ : angle-resolved photoemission results. Phys. Rev. Lett. 76, 4841–4844 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-T c superconductors. Nature 392, 157–160 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2-x Na x CuO2Cl2 . Science 307, 901–904 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Kanigel, A. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Phys. 2, 447–451 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Hossain, M. A. et al. In situ doping control of the surface of high-temperature superconductors. Nature Phys. 4, 527–531 (2008)

    Article  CAS  Google Scholar 

  8. Yang, H. B. et al. Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ . Nature 456, 77–80 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-T c superconductor. Nature 447, 565–568 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Bangura, A. et al. Small Fermi surface pockets in underdoped high temperature superconductors: observation of Shubnikov–de Haas oscillations in YBa2Cu4O8 . Phys. Rev. Lett. 100, 047004 (2008)

    Article  ADS  CAS  Google Scholar 

  11. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-T c superconductors. Nature 450, 533–536 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Yelland, E. A. et al. Quantum oscillations in the underdoped cuprate YBa2Cu4O8 . Phys. Rev. Lett. 100, 047003 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Jaudet, C. et al. de Haas–van Alphen oscillations in the underdoped high temperature superconductor YBa2Cu3O6. 5 . Phys. Rev. Lett. 100, 187005 (2008)

    Article  ADS  Google Scholar 

  14. Sebastian, S. E. et al. A multi-component Fermi surface in the vortex state of an underdoped high-T c superconductor. Nature 454, 200–203 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Chakravarty, S., Nayak, C. & Tewari, S. Angle-resolved photoemission spectra in the cuprates from the d-density wave theory. Phys. Rev. B 68, 100504 (2003)

    Article  ADS  Google Scholar 

  16. Ding, H. et al. Momentum dependence of the superconducting gap in Bi2Sr2CaCu2O8 . Phys. Rev. Lett. 74, 2784–2787 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Osterwalder, J. et al. Angle-resolved photoemission experiments on Bi2Sr2CaCu208+δ (001): effects of the incommensurate lattice modulation. Appl. Phys. A 60, 247–254 (1995)

    ADS  Google Scholar 

  18. Aebi, P. et al. Complete Fermi surface mapping of Bi2Sr2CaCu2O8+x (001): coexistence of short range antiferromagnetic correlations and metallicity in the same phase. Phys. Rev. Lett. 72, 2757–2760 (1994)

    Article  ADS  CAS  Google Scholar 

  19. Nakayama, K. et al. Shadow bands in single-layered Bi2Sr2CuO6+δ studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 74, 054505 (2006)

    Article  ADS  Google Scholar 

  20. Meng, J. Q. et al. Monotonic d-wave superconducting gap of the optimally doped Bi2Sr1. 6La0. 4CuO6 superconductor by laser-based angle-resolved photoemission spectroscopy. Phys. Rev. B 79, 024514 (2009)

    Article  ADS  Google Scholar 

  21. Meng, J. Q. et al. Growth, characterization and physical properties of high-quality large single crystals of Bi2(Sr2-x La x )CuO6+δ high-temperature superconductors. Supercond. Sci. Technol. 22, 045010 (2009)

    Article  ADS  Google Scholar 

  22. Ono S & Ando, Y. Evolution of the resistivity anisotropy in Bi2Sr2-x LaxCuO6+δ single crystals for a wide range of hole doping. Phys. Rev. B 67, 104512 (2003)

    Article  ADS  Google Scholar 

  23. Chakravarty, S. & Kee, H. Y. Fermi pockets and quantum oscillations of the Hall coefficient in high-temperature superconductors. Proc. Natl Acad. Sci. USA 105, 8835–8839 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Chang, J. et al. Electronic structure near the 1/8-anomaly in La-based cuprates. N. J. Phys. 10, 103016 (2008)

    Article  Google Scholar 

  25. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    Article  ADS  Google Scholar 

  26. Wen, X. G. & Lee, P. A. Theory of underdoped cuprates. Phys. Rev. Lett. 76, 503–506 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Yang, K. Y., Rice, T. M. & Zhang, F. C. Phenomenological theory of the pseudogap state. Phys. Rev. B 73, 174501 (2006)

    Article  ADS  Google Scholar 

  28. Ng, T.-K. Spinon-holon binding in t-J model. Phys. Rev. B 71, 172509 (2005)

    Article  ADS  Google Scholar 

  29. Kaul, R. K., Kim, Y. B., Sachdev, S. & Senthil, T. Algebraic charge liquids. Nature Phys. 4, 28–31 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696–699 (2008)

    Article  ADS  CAS  Google Scholar 

  31. Ding, H. et al. Evolution of the Fermi surface with carrier concentration in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 78, 2628–2631 (1997)

    Article  ADS  CAS  Google Scholar 

  32. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-T c superconductors. Phys. Rev. B 57, R11093–R11096 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.-H. Lee, P. A. Lee, S. Sachdev, Z.-X. Shen, X. G. Wen, Z. Y. Weng, T. Xiang, G. M. Zhang and F. C. Zhang for discussions. This work was supported by the NSFC, the MOST of China and the Chinese Academy of Sciences.

Author Contributions J.M. contributed to La-Bi2201 sample growth with the assistance of G.L.; X.D. and W.L. contributed to the magnetic measurement of samples; G.L., W.Z., L.Z., H.L., J.M., X.D., X.J., D.M., S.L., J.Z., G.W., Y. Zhou, Y. Zhu, X.W., Z.X. and C.C. contributed to the development and maintenance of the laser-ARPES system; J.M. carried out the experiment with assistance from G.L., W.Z., L.Z., H.L., X.J., D.M. and S.L.; X.J.Z. and J.M. analysed the data and wrote the paper; X.J.Z. was responsible for overall project direction, planning, management and infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Zhou.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Data, Supplementary Figures 1-2 with Legends and Supplementary References. (PDF 160 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, J., Liu, G., Zhang, W. et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor. Nature 462, 335–338 (2009). https://doi.org/10.1038/nature08521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08521

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing