Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia

Abstract

Mesenchymal cells contribute to the ‘stroma’ of most normal and malignant tissues, with specific mesenchymal cells participating in the regulatory niches of stem cells. By examining how mesenchymal osteolineage cells modulate haematopoiesis, here we show that deletion of Dicer1 specifically in mouse osteoprogenitors, but not in mature osteoblasts, disrupts the integrity of haematopoiesis. Myelodysplasia resulted and acute myelogenous leukaemia emerged that had acquired several genetic abnormalities while having intact Dicer1. Examining gene expression altered in osteoprogenitors as a result of Dicer1 deletion showed reduced expression of Sbds, the gene mutated in Schwachman–Bodian–Diamond syndrome—a human bone marrow failure and leukaemia pre-disposition condition. Deletion of Sbds in mouse osteoprogenitors induced bone marrow dysfunction with myelodysplasia. Therefore, perturbation of specific mesenchymal subsets of stromal cells can disorder differentiation, proliferation and apoptosis of heterologous cells, and disrupt tissue homeostasis. Furthermore, primary stromal dysfunction can result in secondary neoplastic disease, supporting the concept of niche-induced oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired osteoblastic differentiation in OCD fl/fl mice.
Figure 2: Myelodysplasia in OCD fl/fl mice.
Figure 3: Myelodysplasia in OCD fl/fl mice is induced by the bone marrow microenvironment.
Figure 4: Myeloid sarcoma and acute myelogenous leukaemia in OCD fl/fl mice.
Figure 5: Targeted deletion of the Sbds gene from osteoprogenitor cells recapitulates many features of the OCD fl/fl phenotype.

Similar content being viewed by others

References

  1. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Chan, C. K. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Fleming, H. E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008)

    Article  CAS  Google Scholar 

  5. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  Google Scholar 

  6. Krol, J. et al. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol. Cell 25, 575–586 (2007)

    Article  CAS  Google Scholar 

  7. Lu, J. et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 14, 843–853 (2008)

    Article  CAS  Google Scholar 

  8. Kumar, M. S. et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 39, 673–677 (2007)

    Article  CAS  Google Scholar 

  9. Rodda, S. J. & McMahon, A. P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006)

    Article  CAS  Google Scholar 

  10. Cobb, B. S. et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201, 1367–1373 (2005)

    Article  CAS  Google Scholar 

  11. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002)

    Article  CAS  Google Scholar 

  12. Kogan, S. C. et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100, 238–245 (2002)

    Article  CAS  Google Scholar 

  13. Heaney, M. L. & Golde, D. W. Myelodysplasia. N. Engl. J. Med. 340, 1649–1660 (1999)

    Article  CAS  Google Scholar 

  14. Celso, C. L. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2008)

    Article  Google Scholar 

  15. Sternberg, A. et al. Evidence for reduced B-cell progenitors in early (low-risk) myelodysplastic syndrome. Blood 106, 2982–2991 (2005)

    Article  CAS  Google Scholar 

  16. van de Loosdrecht, A. A. et al. Identification of distinct prognostic subgroups in low- and intermediate-1-risk myelodysplastic syndromes by flow cytometry. Blood 111, 1067–1077 (2008)

    Article  CAS  Google Scholar 

  17. Zhu, J. et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109, 3706–3712 (2007)

    Article  CAS  Google Scholar 

  18. Wu, J. Y. et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gsα-dependent signaling pathways. Proc. Natl Acad. Sci. USA 105, 16976–16981 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Korkolopoulou, P. et al. Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia 15, 1369–1376 (2001)

    Article  CAS  Google Scholar 

  20. Zhang, M. et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J. Biol. Chem. 277, 44005–44012 (2002)

    Article  CAS  Google Scholar 

  21. Schilling, T. et al. Microarray analyses of transdifferentiated mesenchymal stem cells. J. Cell. Biochem. 103, 413–433 (2008)

    Article  CAS  Google Scholar 

  22. Janssens, K. et al. Transforming growth factor-β1 to the bone. Endocr. Rev. 26, 743–774 (2005)

    Article  CAS  Google Scholar 

  23. Boocock, G. R. et al. Mutations in SBDS are associated with Shwachman–Diamond syndrome. Nature Genet. 33, 97–101 (2003)

    Article  CAS  Google Scholar 

  24. Rawls, A. S. et al. Lentiviral-mediated RNAi inhibition of Sbds in murine hematopoietic progenitors impairs their hematopoietic potential. Blood 110, 2414–2422 (2007)

    Article  CAS  Google Scholar 

  25. Dror, Y. & Freedman, M. H. Shwachman–Diamond syndrome: an inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment. Blood 94, 3048–3054 (1999)

    Article  CAS  Google Scholar 

  26. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  CAS  Google Scholar 

  27. Yang, F. C. et al. Nf1-dependent tumors require a microenvironment containing Nf1+/- - and c-kit-dependent bone marrow. Cell 135, 437–448 (2008)

    Article  CAS  Google Scholar 

  28. Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Li, L. & Neaves, W. B. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66, 4553–4557 (2006)

    Article  CAS  Google Scholar 

  31. Sneddon, J. B. & Werb, Z. Location, location, location: the cancer stem cell niche. Cell Stem Cell 1, 607–611 (2007)

    Article  CAS  Google Scholar 

  32. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004)

    Article  ADS  CAS  Google Scholar 

  33. Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell 129, 1097–1110 (2007)

    Article  CAS  Google Scholar 

  34. Walkley, C. R. et al. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007)

    Article  CAS  Google Scholar 

  35. Mellibovsky, L. et al. Bone remodeling alterations in myelodysplastic syndrome. Bone 19, 401–405 (1996)

    Article  CAS  Google Scholar 

  36. Kobayashi, T. et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc. Natl Acad. Sci. USA 105, 1949–1954 (2008)

    Article  ADS  CAS  Google Scholar 

  37. Raaijmakers, M. H. et al. Quantitative assessment of gene expression in highly purified hematopoietic cells using real-time reverse transcriptase polymerase chain reaction. Exp. Hematol. 30, 481–487 (2002)

    Article  CAS  Google Scholar 

  38. Montaner, D. et al. Next station in microarray data analysis: GEPAS. Nucleic Acids Res. 34, W486–W491 (2006)

    Article  CAS  Google Scholar 

  39. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Schipani, E. Attar and H. Kronenberg for advice and discussion, A. McMahon for providing the Osx-Cre mice, J. Fujisaki, D. Wilpitz, M. Ohishi, S. Vallet, M. Churchill and G. Frankl for technical assistance, the Histocore (Endocrine Unit), Flow Core at the Center for Regenerative Medicine, Massachusetts General Hospital (L. Pickett and K. Folz-Donahue), and F. Preffer and D. Dombrowski for assistance with histology and flow-cytometry. We thank D. Machon for help preparing the manuscript and the Cytogenetics Core at Brigham Women/Dana Farber (Y. Xiao and C. Lee) for performing CGH analyses. This work was supported by a Fellowship Award of the Dutch Cancer Society (KWF) and a Special Fellowship Award of The Leukemia & Lymphoma Society to M.H.G.P.R. and grants of the National Institutes of Health, the Harvard Stem Cell Institute and the Ellison Medical Foundation to D.T.S.

Author Contributions M.H.G.P.R., S.G. and D.T.S. initiated the study. M.H.G.P.R., S.M. and D.T.S. designed the experiments and analysed the data. M.H.G.P.R. carried out most of the experimental work with the help of S.M., J.A.S., T.K., S.G., E.O.S., S.Z., M.M. and Z.A. B.L.E. and F.A.-S. analysed the microarray results. R.P.H. reviewed bone marrow histology and peripheral blood morphology. C.L. supervised the in vivo imaging studies. M.M. and J.M.R. provided materials and discussion. M.H.G.P.R. and D.T.S. wrote the manuscript. D.T.S. directed the research. All authors discussed and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc H. G. P. Raaijmakers or David. T. Scadden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Figures 1-18 with legends, Supplementary Tables 1-3, Supplementary Methods and Materials and Supplementary References. (PDF 5211 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raaijmakers, M., Mukherjee, S., Guo, S. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010). https://doi.org/10.1038/nature08851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08851

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing