Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface

Abstract

The spontaneous organization of multicomponent micrometre-sized colloids1 or nanocrystals2 into superlattices is of scientific importance for understanding the assembly process on the nanometre scale and is of great interest for bottom-up fabrication of functional devices. In particular, co-assembly of two types of nanocrystal into binary nanocrystal superlattices (BNSLs) has recently attracted significant attention2,3,4,5,6,7,8, as this provides a low-cost, programmable way to design metamaterials4 with precisely controlled properties that arise from the organization and interactions of the constituent nanocrystal components9. Although challenging, the ability to grow and manipulate large-scale BNSLs is critical for extensive exploration of this new class of material. Here we report a general method of growing centimetre-scale, uniform membranes of BNSLs that can readily be transferred to arbitrary substrates. Our method is based on the liquid–air interfacial assembly of multicomponent nanocrystals and circumvents the limitations associated with the current assembly strategies, allowing integration of BNSLs on any substrate for the fabrication of nanocrystal-based devices10. We demonstrate the construction of magnetoresistive devices by incorporating large-area (1.5 mm × 2.5 mm) BNSL membranes; their magnetotransport measurements clearly show that device magnetoresistance is dependent on the structure (stoichiometry) of the BNSLs. The ability to transfer BNSLs also allows the construction of free-standing membranes and other complex architectures that have not been accessible previously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large-scale BNSL membranes self-assembled at the liquid–air interface.
Figure 2: BNSL membrane one unit cell thick.
Figure 3: Magnetotransport of large-area (1.5 mm × 2.5 mm) BNSL membranes.
Figure 4: Free-standing BNSL membranes consisting of 11-nm Fe 3 O 4 and 4.5-nm FePt nanocrystals.

Similar content being viewed by others

References

  1. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kiely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Redl, F. X., Cho, K. S., Murray, C. B. & O’Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Saunders, A. E. & Korgel, B. A. Observation of an AB phase in bidisperse nanocrystal superlattices. ChemPhysChem 6, 61–65 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Cheon, J. et al. Magnetic superlattices and their nanoscale phase transition effects. Proc. Natl Acad. Sci. USA 103, 3023–3027 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Talapin, D. V. LEGO materials. ACS Nano 2, 1097–1100 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R. & Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nature Mater. 6, 115–121 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Shevchenko, E. V., Talapin, D. V., Murray, C. B. & O’Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 128, 3620–3637 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Z. Y., Moore, J., Radtke, G., Sirringhaus, H. & O’Brien, S. Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe. J. Am. Chem. Soc. 129, 15702–15709 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Smith, D. K., Goodfellow, B., Smilgies, D. M. & Korgel, B. A. Self-assembled simple hexagonal AB2 binary nanocrystal superlattices: SEM, GISAXS, and defects. J. Am. Chem. Soc. 131, 3281–3290 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Overgaag, K. et al. Binary superlattices of PbSe and CdSe nanocrystals. J. Am. Chem. Soc. 130, 7833–7835 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. Friedrich, H. et al. Quantitative structural analysis of binary nanocrystal superlattices by electron tomography. Nano Lett. 9, 2719–2724 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Jang, S., Kong, W. & Zeng, H. Magnetotransport in Fe3O4 nanoparticle arrays dominated by noncollinear surface spins. Phys. Rev. B 76, 212403 (2007)

    Article  ADS  Google Scholar 

  19. Tauba, N., Tsukernikb, A. & Markovich, G. Inter-particle spin-polarized tunneling in arrays of magnetite nanocrystals. J. Magn. Magn. Mater. 321, 1933–1938 (2009)

    Article  ADS  Google Scholar 

  20. Ramos, A. V. et al. Magnetotransport properties of Fe3O4 epitaxial thin films: thickness effects driven by antiphase boundaries. J. Appl. Phys. 100, 103902 (2006)

    Article  ADS  Google Scholar 

  21. Tran, T. B. et al. Multiple cotunneling in large quantum dot arrays. Phys. Rev. Lett. 95, 076806 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Mueggenburg, K. E., Lin, X. M., Goldsmith, R. H. & Jaeger, H. M. Elastic membranes of close-packed nanoparticle arrays. Nature Mater. 6, 656–660 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Cheng, W. L. et al. Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Mater. 8, 519–525 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Viau, G. et al. Ruthenium nanoparticles: size, shape, and self-assemblies. Chem. Mater. 15, 486–494 (2003)

    Article  CAS  Google Scholar 

  25. Aleksandrovic, V. et al. Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the Langmuir-Blodgett technique. ACS Nano 2, 1123–1130 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Sachan, M., Walrath, N. D., Majetich, S. A., Krycka, K. & Kao, C. Interaction effects within Langmuir layers and three-dimensional arrays of ε-Co nanoparticles. J. Appl. Phys. 99, 08C302 (2006)

    Article  Google Scholar 

  27. Evers, W. H., Friedrich, H., Filion, L., Dijkstra, M. & Vanmaekelbergh, D. Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography. Angew. Chem. Int. Ed. 48, 9655–9657 (2009)

    Article  CAS  Google Scholar 

  28. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Mater. 3, 891–895 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Sun, S. H., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Shevchenko, E. V. et al. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J. Am. Chem. Soc. 124, 11480–11485 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.D. and C.B.M. acknowledge the financial support from the US Army Research Office (ARO) under award number MURI W911NF-08-1-0364. J.C., P.M.V. and J.M.K. are grateful for support from the NSF MRSEC programme under award number DMR-0520020. We thank C. Kagan for access to the thermal evaporator.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and C.B.M. conceived and designed the experiments. A.D. studied the Fe3O4–FePt and Fe3O4–CoPt3 nanocrystal systems, and J.C. studied the Fe3O4–Fe3O4 system and the CaB6-type Fe3O4–FePt system. A.D. and J.C. carried out BNSL structural characterization and magnetoresistive device fabrication. A.D., J.C., P.M.V. and J.M.K. studied the magnetotransport of BNSL membranes. A.D. and C.B.M. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Angang Dong or Christopher B. Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-8 with legends. (PDF 4692 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, A., Chen, J., Vora, P. et al. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010). https://doi.org/10.1038/nature09188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09188

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing