Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation

Abstract

PPARγ is the functioning receptor for the thiazolidinedione (TZD) class of antidiabetes drugs including rosiglitazone and pioglitazone1. These drugs are full classical agonists for this nuclear receptor, but recent data have shown that many PPARγ-based drugs have a separate biochemical activity, blocking the obesity-linked phosphorylation of PPARγ by Cdk5 (ref. 2). Here we describe novel synthetic compounds that have a unique mode of binding to PPARγ, completely lack classical transcriptional agonism and block the Cdk5-mediated phosphorylation in cultured adipocytes and in insulin-resistant mice. Moreover, one such compound, SR1664, has potent antidiabetic activity while not causing the fluid retention and weight gain that are serious side effects of many of the PPARγ drugs. Unlike TZDs, SR1664 also does not interfere with bone formation in culture. These data illustrate that new classes of antidiabetes drugs can be developed by specifically targeting the Cdk5-mediated phosphorylation of PPARγ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Novel PPARγ ligands lack classical agonism, block phosphorylation at Ser 273.
Figure 2: Structural and in vitro functional analysis of SR1664.
Figure 3: Antidiabetic activity of SR1664 in high-fat diet (HFD) mice.
Figure 4: SR1664 has potent antidiabetic activity and does not promote fluid retention in ob/ob mice.

Similar content being viewed by others

References

  1. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995)

    Article  CAS  Google Scholar 

  2. Choi, J. H. et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466, 451–456 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994)

    Article  CAS  Google Scholar 

  4. Willson, T. M., Lambert, M. H. & Kliewer, S. A. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu. Rev. Biochem. 70, 341–367 (2001)

    Article  CAS  Google Scholar 

  5. Forman, B. M. et al. 15-Deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803–812 (1995)

    Article  CAS  Google Scholar 

  6. Henke, B. R. et al. N-(2-Benzoylphenyl)-l-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J. Med. Chem. 41, 5020–5036 (1998)

    Article  CAS  Google Scholar 

  7. Parulkar, A. A., Pendergrass, M. L., Granda-Ayala, R., Lee, T. R. & Fonseca, V. A. Nonhypoglycemic effects of thiazolidinediones. Ann. Intern. Med. 134, 61–71 (2001)

    Article  CAS  Google Scholar 

  8. Kahn, S. E. et al. Rosiglitazone-associated fractures in type 2 diabetes. Diabetes Care 31, 845–851 (2008)

    Article  CAS  Google Scholar 

  9. Nesto, R. W. et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 27, 256–263 (2004)

    Article  CAS  Google Scholar 

  10. Rocchi, S. et al. A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol. Cell 8, 737–747 (2001)

    Article  CAS  Google Scholar 

  11. Berger, J. P. et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator. Mol. Endocrinol. 17, 662–676 (2003)

    Article  CAS  Google Scholar 

  12. Lamotte, Y. et al. Synthesis and biological activities of novel indole derivatives as potent and selective PPARγ modulators. Bioorg. Med. Chem. Lett. 20, 1399–1404 (2010)

    Article  CAS  Google Scholar 

  13. Grana, X. et al. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc. Natl Acad. Sci. USA 91, 3834–3838 (1994)

    Article  ADS  CAS  Google Scholar 

  14. Kliewer, S. A. et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell 83, 813–819 (1995)

    Article  CAS  Google Scholar 

  15. Chawla, A., Schwarz, E. J., Dimaculangan, D. D. & Lazar, M. A. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135, 798–800 (1994)

    Article  CAS  Google Scholar 

  16. Grey, A. et al. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J. Clin. Endocrinol. Metab. 92, 1305–1310 (2007)

    Article  CAS  Google Scholar 

  17. Lecka-Czernik, B. et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J. Cell. Biochem. 74, 357–371 (1999)

    Article  CAS  Google Scholar 

  18. Bruning, J. B. et al. Partial agonists activate PPARγ using a helix 12 independent mechanism. Structure 15, 1258–1271 (2007)

    Article  CAS  Google Scholar 

  19. Hamuro, Y. et al. Hydrogen/deuterium-exchange (H/D-Ex) of PPARγ LBD in the presence of various modulators. Protein Sci. 15, 1883–1892 (2006)

    Article  CAS  Google Scholar 

  20. Nolte, R. T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137–143 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Chalmers, M. J., Busby, S. A., Pascal, B. D., Southern, M. R. & Griffin, P. R. A two-stage differential hydrogen deuterium exchange method for the rapid characterization of protein/ligand interactions. J. Biomol. Tech. 18, 194–204 (2007)

    PubMed  PubMed Central  Google Scholar 

  22. DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237, E214–E223 (1979)

    CAS  PubMed  Google Scholar 

  23. Flier, J. S., Cook, K. S., Usher, P. & Spiegelman, B. M. Severely impaired adipsin expression in genetic and acquired obesity. Science 237, 405–408 (1987)

    Article  ADS  CAS  Google Scholar 

  24. Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996)

    Article  CAS  Google Scholar 

  25. Kahn, B. B. & McGraw, T. E. Rosiglitazone, PPARγ, and type 2 diabetes. N. Engl. J. Med. 363, 2667–2669 (2010)

    Article  CAS  Google Scholar 

  26. Nolan, J. J., Ludvik, B., Beerdsen, P., Joyce, M. & Olefsky, J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 331, 1188–1193 (1994)

    Article  CAS  Google Scholar 

  27. Hamuro, Y. et al. Hydrogen/deuterium-exchange (H/D-Ex) of PPARγ LBD in the presence of various modulators. Protein Sci. 15, 1883–1892 (2006)

    Article  CAS  Google Scholar 

  28. Mayerson, A. B. et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51, 797–802 (2002)

    Article  CAS  Google Scholar 

  29. Kim, H. J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from S. Novick for assistance in the HDX studies and from R. D. Garcia-Ordonez in protein production and mutagenesis. We are grateful for support from B. Pascal and S. Willis for software analysing the HDX data. We are grateful to R. Gupta and P. Cohen for their critical comments on the manuscript. This work was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Mental Health (grant U54-MH074404, H. Rosen principal investigator), the National Institute of General Medical Sciences (grant R01-GM084041, P.R.G.) and the National Institute of Diabetes and Digestive and Kidney Diseases (grant 1RC4DK090861, B.M.S.). This work also supported by NIH DK31405 to B.M.S.

Author information

Authors and Affiliations

Authors

Contributions

B.M.S. and P.R.G. conceived the project and designed research; J.H.C., A.S.B., T.M.K., S.A.B., M.J.C., N.K., D.S.K., Y.S., Y.H., J.B.B., D.P.M., M.D.C., D.L., M.J.J., S.C.S., and D.V. performed research; J.H.C., A.S.B., T.M.K., S.A.B., M.J.C., N.K., D.K., J.B.B., D.M., M.D.C., D.L., M.J.J., S.C.S., D.V., G.I.S., B.M.S and P.R.G. analysed data; and B.M.S., A.S.B. and P.R.G. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Bruce M. Spiegelman or Patrick R. Griffin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8 with legends and Supplementary Table 1. (PDF 540 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., Banks, A., Kamenecka, T. et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477, 477–481 (2011). https://doi.org/10.1038/nature10383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10383

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing