Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An overview of N-heterocyclic carbenes

Abstract

The successful isolation and characterization of an N-heterocyclic carbene in 1991 opened up a new class of organic compounds for investigation. From these beginnings as academic curiosities, N-heterocyclic carbenes today rank among the most powerful tools in organic chemistry, with numerous applications in commercially important processes. Here we provide a concise overview of N-heterocyclic carbenes in modern chemistry, summarizing their general properties and uses and highlighting how these features are being exploited in a selection of pioneering recent studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major applications of NHCs.
Figure 2: Structural features of NHCs.
Figure 3: Major applications of NHCs coordinated to transition metals.
Figure 4: NHCs as ligands in ruthenium-catalysed olefin metathesis.
Figure 5: NHCs as ligands in palladium-catalysed cross-coupling.
Figure 6: NHC coordination to nanoparticles and metal surfaces.
Figure 7: Major applications of NHCs coordinated to p-block elements.
Figure 8: Stabilization of p-block species by NHCs.
Figure 9: Major applications of NHCs in organocatalysis.
Figure 10: Major NHC-catalysed reactions of aldehydes.
Figure 11: NHC-catalysed β-functionalization of saturated esters.

Similar content being viewed by others

References

  1. Dumas, J. B. & Peligot, E. Mémoire sur l’esprit-de-bois et les divers composés éthéres qui en proviennent. Ann. Chim. Phys. 58, 5–74 (1835)

    Google Scholar 

  2. Arduengo, A. J., III & Krafczyk, R. Auf der Suche nach stabilen Carbenen. Chem. Unserer Zeit 32, 6–14 (1998)

    Article  CAS  Google Scholar 

  3. Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid triply bonded species: synthesis of a stable λ3-phosphinocarbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988)

    Article  CAS  Google Scholar 

  4. Arduengo, A. J., III, Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991)This is the first report of a stable, isolable NHC.

    Article  CAS  Google Scholar 

  5. Wanzlick, H.-W. & Schönherr, H.-J. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. Int. Edn Engl. 7, 141–142 (1968)

    Article  CAS  Google Scholar 

  6. Öfele, K. 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom Ein Neuer Übergangsmetall-carben-komplex. J. Organomet. Chem. 12, P42–P43 (1968)

    Article  Google Scholar 

  7. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. de Frémont, P., Marion, N. & Nolan, S. P. Carbenes: synthesis, properties, and organometallic chemistry. Coord. Chem. Rev. 253, 862–892 (2009)

    Article  CAS  Google Scholar 

  9. Herrmann, W. A. & Köcher, C. N-heterocyclic carbenes. Angew. Chem. Int. Edn Engl. 36, 2162–2187 (1997)

    Article  CAS  Google Scholar 

  10. Runyon, J. W. et al. Carbene-based Lewis pairs for hydrogen activation. Aust. J. Chem. 64, 1165–1172 (2011)

    Article  CAS  Google Scholar 

  11. Heinemann, C., Müller, T., Apeloig, Y. & Schwarz, H. On the question of stability, conjugation, and “aromaticity” in imidazol-2-ylidenes and their silicon analogs. J. Am. Chem. Soc. 118, 2023–2038 (1996)

    Article  CAS  Google Scholar 

  12. Arduengo, A. J., III, Rasika Dias, H. V., Harlow, R. L. & Kline, M. Electronic stabilization of nucleophilic carbenes. J. Am. Chem. Soc. 114, 5530–5534 (1992)

    Article  CAS  Google Scholar 

  13. Arduengo, A. J., III, Goerlich, J. R. & Marshall, W. J. A stable diaminocarbene. J. Am. Chem. Soc. 117, 11027–11028 (1995)

    Article  CAS  Google Scholar 

  14. Melaimi, M., Soleilhavoup, M. & Bertrand, G. Stable cyclic carbenes and related species beyond diaminocarbenes. Angew. Chem. Int. Edn 49, 8810–8849 (2010)

    Article  CAS  Google Scholar 

  15. Lavallo, V., Canac, Y., Präsang, C., Donnadieu, B. & Bertrand, G. Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts: a quaternary carbon atom makes the difference. Angew. Chem. Int. Edn 44, 5705–5709 (2005)This is the first report of a cyclic (alkyl)(amino)carbene (CAAC).

    Article  CAS  Google Scholar 

  16. Aldeco-Perez, E. et al. Isolation of a C5-deprotonated imidazolium, a crystalline “abnormal” N-heterocyclic carbene. Science 326, 556–559 (2009)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  17. Schuster, O. & Yang, L. Raubenheimer, H. G. & Albrecht, M. Beyond conventional N-heterocyclic carbenes: abnormal, remote and other classes of NHC ligands with reduced heteroatom stabilization. Chem. Rev. 109, 3445–3478 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. Benhamou, L., Chardon, E., Lavigne, G., Bellemin-Laponnaz, S. & César, V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev. 111, 2705–2733 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Dröge, T. & Glorius, F. The measure of all rings – N-heterocyclic carbenes. Angew. Chem. Int. Edn 49, 6940–6952 (2010)

    Article  CAS  Google Scholar 

  20. Nelson, D. J. & Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 42, 6723–6753 (2013)This recent review gives a comprehensive overview of the electronic properties of NHCs and includes data for about 300 compounds.

    Article  CAS  PubMed  Google Scholar 

  21. Hillier, A. C. et al. A combined experimental and theoretical study examining the binding of N-heterocyclic carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) moiety: insight into stereoelectronic differences between unsaturated and saturated NHC ligands. Organometallics 22, 4322–4326 (2003)

    Article  CAS  Google Scholar 

  22. Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev. 77, 313–348 (1977)

    Article  CAS  Google Scholar 

  23. Cardin, D. J., Çetinkaya, B. & Lappert, M. F. Transition metal-carbene complexes. Chem. Rev. 72, 545–574 (1972)

    Article  CAS  Google Scholar 

  24. Díez-González, S. & Nolan, S. P. Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: a quest for understanding. Coord. Chem. Rev. 251, 874–883 (2007)

    Article  CAS  Google Scholar 

  25. Jacobsen, H., Correa, A., Poater, A., Costabile, C. & Cavallo, L. Understanding the M-(NHC) (NHC = N-heterocyclic carbene) bond. Coord. Chem. Rev. 253, 687–703 (2009)

    Article  CAS  Google Scholar 

  26. Nemcsok, D., Wichmann, K. & Frenking, G. The significance of π interactions in Group 11 complexes with N-heterocyclic carbenes. Organometallics 23, 3640–3646 (2004)

    Article  CAS  Google Scholar 

  27. Crabtree, R. H. NHC ligands versus cyclopentadienyls and phosphines as spectator ligands in organometallic chemistry. J. Organomet. Chem. 690, 5451–5457 (2005)

    Article  CAS  Google Scholar 

  28. Crudden, C. M. & Allen, D. P. Stability and reactivity of N-heterocyclic carbene complexes. Coord. Chem. Rev. 248, 2247–2273 (2004)

    Article  CAS  Google Scholar 

  29. Hahn, F. E. & Jahnke, M. C. Heterocyclic carbenes: synthesis and coordination chemistry. Angew. Chem. Int. Ed. 47, 3122–3172 (2008)This is an excellent comprehensive review summarising the synthesis and coordination chemistry of a range of NHCs.

    Article  CAS  Google Scholar 

  30. Kuhn, N. & Al-Sheikh, A. 2,3-Dihydroimidazol-2-ylidenes and their main group element chemistry. Coord. Chem. Rev. 249, 829–857 (2005)

    Article  CAS  Google Scholar 

  31. Arnold, P. L. & Casely, I. J. F-block N-heterocyclic carbene complexes. Chem. Rev. 109, 3599–3611 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Poyatos, M., Mata, J. A. & Peris, E. Complexes with poly(N-heterocyclic carbene) ligands: structural features and catalytic applications. Chem. Rev. 109, 3677–3707 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Mercs, L. & Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 39, 1903–1912 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Oisaki, K., Li, Q., Furukawa, H., Czaja, A. U. & Yaghi, O. M. A. Metal-organic framework with covalently bound organometallic complexes. J. Am. Chem. Soc. 132, 9262–9264 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. Lee, K. M., Lee, C. K. & Lin, I. J. B. A facile synthesis of unusual liquid-crystalline gold(I) dicarbene compounds. Angew. Chem. Int. Edn Engl. 36, 1850–1852 (1997)

    Article  CAS  Google Scholar 

  36. Boydston, A. J., Williams, K. A. & Bielawski, C. W. A modular approach to main-chain organometallic polymers. J. Am. Chem. Soc. 127, 12496–12497 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Visbal, R. & Concepción Gimeno, M. N-heterocyclic carbene metal complexes: photoluminescence and applications. Chem. Soc. Rev. 43, 3551–3574 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. Hindi, K. M., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Youngs, W. J. The medicinal applications of imidazolium carbene−metal complexes. Chem. Rev. 109, 3859–3884 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hickey, J. L. et al. Mitochondria-targeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J. Am. Chem. Soc. 130, 12570–12571 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. Metal complexes of N-heterocyclic carbenes—a new structural principle for catalysts in homogeneous catalysis. Angew. Chem. Int. Edn Engl. 34, 2371–2374 (1995)This is the first report to apply an NHC as a ligand in transition-metal catalysis.

    Article  CAS  Google Scholar 

  41. Díez-González, S., Marion, N. & Nolan, S. P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev. 109, 3612–3676 (2009)This comprehensive review on NHCs as ligands in transition-metal catalysis forms part of a special issue of Chemical Reviews on carbenes.

    Article  CAS  PubMed  Google Scholar 

  42. Herrmann, W. A. N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew. Chem. Int. Ed. 41, 1290–1309 (2002)

    Article  CAS  Google Scholar 

  43. Glorius, F. N-Heterocyclic Carbenes in Transition Metal Catalysis (Springer, 2007)

    Book  Google Scholar 

  44. Nolan, S. P. N-Heterocyclic Carbenes in Synthesis (Wiley, 2006)

    Book  Google Scholar 

  45. Normand, A. T. & Cavell, K. J. Donor-functionalised N-heterocyclic carbene complexes of Group 9 and Group 10 metals in catalysis: trends and directions. Eur. J. Inorg. Chem. 2781–2800 (2008)

  46. Marion, N. & Nolan, S. P. N-heterocyclic carbenes in gold catalysis. Chem. Soc. Rev. 37, 1776–1782 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. Marciniec, B. Hydrosilylation. In Advances in Silicon Science (ed. Marciniec, B. ) Vol. 1 3–51 (Springer, 2009)

    Google Scholar 

  48. Kantchev, E. A. B., O’Brien, C. J. & Organ, M. G. Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions—a synthetic chemists perspective. Angew. Chem. Int. Edn 46, 2768–2813 (2007)

    Article  CAS  Google Scholar 

  49. Fortman, G. C. & Nolan, S. P. N-heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. Chem. Soc. Rev. 40, 5151–5169 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. Würtz, S. & Glorius, F. Surveying sterically demanding N-heterocyclic carbene ligands with restricted flexibility for palladium-catalyzed cross-coupling reactions. Acc. Chem. Res. 41, 1523–1533 (2008)

    Article  CAS  PubMed  Google Scholar 

  51. Valente, C. et al. The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Edn 51, 3314–3332 (2012)

    Article  CAS  Google Scholar 

  52. Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. Samojłowicz, C., Bieniek, M. & Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev. 109, 3708–3742 (2009)

    Article  CAS  PubMed  Google Scholar 

  54. Sanford, M. S., Love, J. A. & Grubbs, R. H. Mechanism and activity of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 123, 6543–6554 (2001)

    Article  CAS  PubMed  Google Scholar 

  55. Endo, K. & Grubbs, R. H. Chelated ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 133, 8525–8527 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Keitz, B. K., Endo, K., Patel, P. R., Herbert, M. B. & Grubbs, R. H. Improved ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 134, 693–699 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. Hartung, J. & Grubbs, R. H. Highly Z-selective and enantioselective ring-opening/cross-metathesis catalyzed by a resolved stereogenic-at-Ru complex. J. Am. Chem. Soc. 135, 10183–10185 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. Gu, S., Ni, P. & Chen, W. N-heterocyclic carbenes: versatile reagents for nickel-catalyzed coupling reactions. Chin. J. Catal. 31, 875–886 (2010)

    Article  CAS  Google Scholar 

  59. Bézier, D., Sortais, J.-B. & Darcel, C. N-heterocyclic carbene ligands and iron: an effective association for catalysis. Adv. Synth. Catal. 355, 19–33 (2013)

    Article  CAS  Google Scholar 

  60. Marion, N. & Nolan, S. P. Well-defined N-heterocyclic carbenes−palladium(II) precatalysts for cross-coupling reactions. Acc. Chem. Res. 41, 1440–1449 (2008)

    Article  CAS  PubMed  Google Scholar 

  61. O’Brien, C. J. et al. Easily prepared air- and moisture-stable Pd-NHC (NHC = N-heterocyclic carbene) complexes: a reliable, user-friendly, highly active palladium precatalyst for the Suzuki-Miyaura reaction. Chem. Eur. J. 12, 4743–4748 (2006)

    Article  CAS  PubMed  Google Scholar 

  62. Schaper, L.-A., Hock, S. J., Herrmann, W. A. & Kühn, F. E. Synthesis and application of water-soluble NHC transition-metal complexes. Angew. Chem. Int. Edn 52, 270–289 (2013)

    Article  CAS  Google Scholar 

  63. Ranganath, K. V. S., Onitsuka, S., Kumar, A. K. & Inanaga, J. Recent progress of N-heterocyclic carbenes in heterogeneous catalysis. Catal. Sci. Technol. 3, 2161–2181 (2013)

    Article  CAS  Google Scholar 

  64. Wang, F., Liu, L.-J., Wang, W., Li, S. & Shi, M. Chiral NHC-metal-based asymmetric catalysis. Coord. Chem. Rev. 256, 804–853 (2012)

    Article  CAS  Google Scholar 

  65. Powell, M. T., Hou, D.-R., Perry, M. C., Cui, X. & Burgess, K. Chiral imidazolylidine ligands for asymmetric hydrogenation of aryl alkenes. J. Am. Chem. Soc. 123, 8878–8879 (2001)

    Article  CAS  PubMed  Google Scholar 

  66. Schumacher, A., Bernasconi, M. & Pfaltz, A. Chiral N-heterocyclic carbene/pyridine ligands for the iridium-catalyzed asymmetric hydrogenation of olefins. Angew. Chem. Int. Edn 52, 7422–7425 (2013)

    Article  CAS  Google Scholar 

  67. Ortega, N., Urban, S., Beiring, B. & Glorius, F. Ruthenium NHC catalyzed highly asymmetric hydrogenation of benzofurans. Angew. Chem. Int. Edn 51, 1710–1713 (2012)

    Article  CAS  Google Scholar 

  68. Ranganath, K. V. S., Kloesges, J., Schäfer, A. H. & Glorius, F. Asymmetric nanocatalysis: N-heterocyclic carbenes as chiral modifiers of Fe3O4/Pd nanoparticles. Angew. Chem. Int. Edn 49, 7786–7789 (2010)This paper reports the first asymmetric heterogeneous catalysis reaction employing NHCs as chiral modifiers.

    Article  CAS  Google Scholar 

  69. Lara, P. et al. Ruthenium nanoparticles stabilized by N-heterocyclic carbenes: ligand location and influence on reactivity. Angew. Chem. Int. Edn 50, 12080–12084 (2011)

    Article  CAS  Google Scholar 

  70. Zhukhovitskiy, A. V., Mavros, M. G., Van Voorhis, T. & Johnson, J. A. Addressable carbene anchors for gold surfaces. J. Am. Chem. Soc. 135, 7418–7421 (2013)

    Article  CAS  PubMed  Google Scholar 

  71. Fuchter, M. J. N-heterocyclic carbene mediated activation of tetravalent silicon compounds: a critical evaluation. Chem. Eur. J. 16, 12286–12294 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. Curran, D. P. et al. Synthesis and reactions of N-heterocyclic carbene boranes. Angew. Chem. Int. Edn 50, 10294–10317 (2011)This review provides an excellent summary of the synthesis and reactivity of NHC–borane adducts.

    Article  CAS  MathSciNet  Google Scholar 

  73. Kolychev, E. L., Theuergarten, E. & Tamm, M. N-heterocyclic carbenes in FLP chemistry. Top. Curr. Chem. 334, 121–155 (2013)

    Article  PubMed  Google Scholar 

  74. Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Y. et al. Carbene-stabilized diphosphorus. J. Am. Chem. Soc. 130, 14970–14971 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. Wang, Y. et al. A stable silicon(0) compound with a Si = Si double bond. Science 321, 1069–1071 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  77. Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an extremely bent acyclic allene (a “carbodicarbene”): a strong donor ligand. Angew. Chem. Int. Edn 47, 3206–3209 (2008)

    Article  CAS  Google Scholar 

  78. Li, H. et al. Fullerene-carbene Lewis acid-base adducts. J. Am. Chem. Soc. 133, 12410–12413 (2011)

    Article  CAS  PubMed  Google Scholar 

  79. Kinjo, R., Donnadieu, B., Celik, M. A., Frenking, G. & Bertrand, G. Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. Science 333, 610–613 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  80. Ruiz, D. A., Ung, G., Melaimi, M. & Bertrand, G. Deprotonation of a borohydride: synthesis of a carbene-stabilized boryl anion. Angew. Chem. Int. Edn 52, 7590–7592 (2013)

    Article  CAS  Google Scholar 

  81. Delaude, L. Betaine adducts of N-heterocyclic carbenes: synthesis, properties, and reactivity. Eur. J. Inorg. Chem. 1681–1699 (2009)

    Article  CAS  Google Scholar 

  82. Moerdyk, J. P. & Bielawski, C. W. Diamidocarbenes as versatile and reversible [2+1] cycloaddition reagents. Nature Chem. 4, 275–280 (2012)

    Article  CAS  ADS  Google Scholar 

  83. Moerdyk, J. P. & Bielawski, C. W. Alkyne and reversible nitrile activation: N,N′-diamidocarbene-facilitated synthesis of cyclopropenes, cyclopropenones, and azirines. J. Am. Chem. Soc. 134, 6116–6119 (2012)

    Article  CAS  PubMed  Google Scholar 

  84. Martin, C. D., Soleilhavoup, M. & Bertrand, G. Carbene-stabilized main group radicals and radical ions. Chem. Sci. 4, 3020–3030 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ueng, S.-H. et al. Complexes of borane and N-heterocyclic carbenes: a new class of radical hydrogen atom donor. J. Am. Chem. Soc. 130, 10082–10083 (2008)

    Article  CAS  PubMed  Google Scholar 

  86. Mahoney, J. K., Martin, D., Moore, C. E., Rheingold, A. L. & Bertrand, G. Bottleable (amino)(carboxy) radicals derived from cyclic (alkyl)(amino) carbenes. J. Am. Chem. Soc. 135, 18766–18769 (2013)

    Article  CAS  PubMed  Google Scholar 

  87. Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007)This review gives a broad overview of the applications of NHCs as organocatalysts.

    Article  CAS  PubMed  Google Scholar 

  88. Chiang, P.-C. & Bode, J. W. in N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools (ed. Díez-González, S. ) 399–435 (Royal Society of Chemistry, 2011)

    Google Scholar 

  89. Fèvre, M., Pinaud, J., Gnanou, Y., Vignolle, J. & Taton, D. N-heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Chem. Soc. Rev. 42, 2142–2172 (2013)

    Article  CAS  PubMed  Google Scholar 

  90. Ukai, T., Tanaka, R., Dokawa, T. A new catalyst for acyloin condensation. [in Japanese]J. Pharm. Soc. Jpn 63, 296–300 (1943)

    Article  CAS  Google Scholar 

  91. Breslow, R. On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Am. Chem. Soc. 80, 3719–3726 (1958)

    Article  CAS  Google Scholar 

  92. Berkessel, A. et al. Umpolung by N-heterocyclic carbenes: generation and reactivity of the elusive 2,2-diamino enols (Breslow intermediates). Angew. Chem. Int. Edn 51, 12370–12374 (2012)This paper provides experimental evidence for the involvement of Breslow intermediates in NHC organocatalysis.

    Article  CAS  Google Scholar 

  93. Bugaut, X. & Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 41, 3511–3522 (2012)

    Article  CAS  PubMed  Google Scholar 

  94. Biju, A. T., Kuhl, N. & Glorius, F. Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners. Acc. Chem. Res. 44, 1182–1195 (2011)

    Article  CAS  PubMed  Google Scholar 

  95. Schedler, M., Wang, D.-S. & Glorius, F. NHC-catalyzed hydroacylation of styrenes. Angew. Chem. Int. Edn 52, 2585–2589 (2013)

    Article  CAS  Google Scholar 

  96. Ryan, S. J., Candish, L. & Lupton, D. W. Acyl anion free N-heterocyclic carbene organocatalysis. Chem. Soc. Rev. 42, 4906–4917 (2013)

    Article  CAS  PubMed  Google Scholar 

  97. Vora, H. U., Wheeler, P. & Rovis, T. Exploiting acyl and enol azolium intermediates via N-heterocyclic carbene-catalyzed reactions of α-reducible aldehydes. Adv. Synth. Catal. 354, 1617–1639 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nair, V. et al. Employing homoenolates generated by NHC catalysis in carbon-carbon bond-forming reactions: state of the art. Chem. Soc. Rev. 40, 5336–5346 (2011)

    Article  CAS  PubMed  Google Scholar 

  99. Chen, X.-Y. & Ye, S. N-heterocyclic carbene-catalyzed reactions of C–C unsaturated bonds. Org. Biomol. Chem. 11, 7991–7998 (2013)

    Article  CAS  PubMed  Google Scholar 

  100. Fu, Z., Xu, J., Zhu, T., Leong, W. W. Y. & Chi, Y. R. β-Carbon activation of saturated carboxylic esters through N-heterocyclic carbene organocatalysis. Nature Chem. 5, 835–839 (2013

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank the European Research Council under the European Community’s Seventh Framework Program (FP7 2007-2013)/ERC grant agreement number 25936, the Deutsche Forschungsgemeinschaft (Leibniz Award and SFB 858), the Alexander von Humboldt Foundation (to M.N.H.) and the Fonds der Chemischen Industrie (to M.S.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors worked together to outline the content of the review and define its scope. The text was primarily written by M.N.H. and F.G. with contributions from all authors. The figures were prepared by M.N.H., C.R. and M.S. Editing of the manuscript, figures and references was done by all authors.

Corresponding author

Correspondence to Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkinson, M., Richter, C., Schedler, M. et al. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014). https://doi.org/10.1038/nature13384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13384

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing