Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The application of mass spectrometry to membrane proteomics

Abstract

Membrane proteins perform some of the most important functions in the cell, including the regulation of cell signaling through surface receptors, cell–cell interactions, and the intracellular compartmentalization of organelles. Recent developments in proteomic strategies have focused on the inclusion of membrane proteins in high-throughput analyses. While slow and steady progress continues to be made in gel-based technologies, significant advances have been reported in non-gel shotgun methods using liquid chromatography coupled to mass spectrometry (LC/MS). These latter strategies facilitate the identification of large numbers of membrane proteins and modifications, and have the potential to provide insights into protein topology and orientation in membranes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gel-based analysis of membrane proteins.
Figure 2: Shotgun proteomic analysis of membrane proteins.
Figure 3: Shotgun proteomic analysis of a hypothetical membrane protein.

Similar content being viewed by others

References

  1. Wallin, E. & Von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    Article  CAS  Google Scholar 

  2. Stevens, T.J. & Arkin, I.T. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39, 417–420 (2000).

    Article  CAS  Google Scholar 

  3. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Disc. 1, 727–730 (2003).

    Article  Google Scholar 

  4. Auerbach, D., Thaminy, S., Hottiger, M.O. & Stagljar, I. The post-genomic era of interactive proteomics: facts and perspectives. Proteomics 2, 611–623 (2002).

    Article  CAS  Google Scholar 

  5. Turk, B.E. & Cantley, L.C. Peptide libraries: at the crossroads of proteomics and bioinformatics. Curr. Opin. Chem. Biol. 7, 84–90 (2003).

    Article  CAS  Google Scholar 

  6. Bader G.D. & Hogue C.W. Analyzing yeast protein–protein interaction data obtained from different sources. Nat. Biotechnol. 20, 991–997 (2002).

    Article  CAS  Google Scholar 

  7. Santoni, V., Kieffer, S., Desclaux, D., Masson, F. & Rabilloud, T. Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21, 3329–3344 (2000).

    Article  CAS  Google Scholar 

  8. Santoni, V., Malloy, M. & Rabilloud, T. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070 (2000).

    Article  CAS  Google Scholar 

  9. Ferro, M. et al. Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc. Natl. Acad. Sci. USA 99, 11487–11492 (2002).

    Article  CAS  Google Scholar 

  10. Ferro, M. et al. Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21, 3517–3526 (2002).

    Article  Google Scholar 

  11. Carboni, L., Piubelli, C., Righetti, P.G., Jansson, B. & Domenici, E. Proteomic analysis of rat brain tissue: comparison of protocols for two-dimensional gel electrophoresis analysis based on different solubilizing agents. Electrophoresis 23, 4132–4141 (2002).

    Article  CAS  Google Scholar 

  12. Henningsen, R., Gale, B.L., Straub, K.M. & DeNagel, D.C. Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2, 1479–1488 (2002).

    Article  CAS  Google Scholar 

  13. Galeva, N. & Altermann, M. Comparison of one-dimensional and two-dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: cytochromes P450 and other membrane proteins. Proteomics 2, 713–722 (2002).

    Article  CAS  Google Scholar 

  14. Simpson, R.J. et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215): Development of a membrane protein database. Electrophoresis 21, 1707–1732 (2000).

    Article  CAS  Google Scholar 

  15. Brookes, P.S. et al. High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics 2, 969–977 (2002).

    Article  CAS  Google Scholar 

  16. Devreese, B., Vanrobaeys, F., Smet, J., Van Beeumen, J. & Van Coster, R. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis. Electrophoresis 23, 2525–2533 (2002).

    Article  CAS  Google Scholar 

  17. Yan, J.X., Harry, R.A., Spibey, C. & Dunn, M.J. Postelectrophoretic staining of proteins separated by two-dimensional gel electrophoresis using SYPRO dyes. Electrophoresis 21, 3657–3665 (2000).

    Article  CAS  Google Scholar 

  18. Sinha, P., Poland, J., Schnolzer, M. & Rabilloud, T. A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics 1, 835–840 (2001).

    Article  CAS  Google Scholar 

  19. van Montfort, B.A., Canas, B., Duurkens, R., Godovac-Zimmermann, J. & Robillard, G.T. Improved in-gel approaches to generate peptide maps of integral membrane proteins with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 37, 322–330 (2002).

    Article  CAS  Google Scholar 

  20. van Montfort, B.A. et al. Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochem. Biophys. Acta 1555, 111–115 (2002).

    CAS  PubMed  Google Scholar 

  21. Han, D.K., Eng, J., Zhou, H., & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2002).

    Article  Google Scholar 

  22. Blonder, J., Goshe, M.B., Moore, R.J., Pasa-Tolic, L., Masselon, C.D., Lipton, M.S. & Smith, R.D. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J. Prot. Res. 1, 351–360 (2002).

    Article  CAS  Google Scholar 

  23. Goshe, M.B., Blonder, J. & Smith, R.D. Affinity labeling of highly hydrophobic integral membrane proteins for proteome-wide analysis. J. Prot. Res., in press (2003).

  24. Washburn, M.P., Wolters,D. & Yates III, J.R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  25. Zhou, H., Ranish, J.A., Watts, J.D., & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol. 20, 512–515 (2002).

    Article  CAS  Google Scholar 

  26. Wu, C.C., MacCoss, M.J., Howell, K.E. & Yates III, J.R. A method for the comprehensive proteomic analysis of membrane proteins: identification, modifications, and topology. Nat. Biotechnol., in press (2003).

  27. Howell,K.E. & Palade,G.E. Hepatic Golgi fractions resolved into membrane and content subfractions. J. Cell Biol. 92, 822–832 (1982).

    Article  CAS  Google Scholar 

  28. Gudepu, R.G. & Wold, F. Posttranslational modifications. in Proteins: Analysis and Design. Angeletti, R.H. (ed.). 121–207 (Academic Press, San Diego, CA; 1998).

    Chapter  Google Scholar 

  29. le Coutre, J. et al. Proteomics on full-length membrane proteins using mass spectrometry. Biochemistry 39, 4237–4242 (2000).

    Article  CAS  Google Scholar 

  30. Whitelegge, J.P., Zhang, H., Aguilera, R., Taylor, R.M. & Cramer, W.A. Full subunit converage liquid chromatography electrospray ionization mass spectrometry (LCMS+) of an oligomeric membrane protein. Mol. Cell. Proteomics 1, 816–827 (2002).

    Article  CAS  Google Scholar 

  31. Gómez, S.M., Nishio, J.N., Faull, K.F. & Whitelegge, J.P. The chloroplast grana defined by intact mass measurements from liquid chromatography mass spectrometry. Mol. Cell. Proteomics 1, 46–59 (2002).

    Article  Google Scholar 

  32. Cadene, M. & Chait, B.T. A robust, detergent-friendly method for mass spectrophometric analysis of integral membrane proteins. Anal. Chem. 72, 5655–5658 (2000).

    Article  CAS  Google Scholar 

  33. Meng, F., Cargile, B.J., Patri, S.M., Johnson, J.R., McLoughlin, S.M. & Kelleher, N.L. Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal. Chem. 74, 2923–2929 (2002).

    Article  CAS  Google Scholar 

  34. Oda, Y., Nagasu, T. & Chait, B.D. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  Google Scholar 

  35. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    Article  CAS  Google Scholar 

  36. Goshe, M.B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analysis. Anal. Chem. 73, 2578–2586 (2001).

    Article  CAS  Google Scholar 

  37. Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccaromyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

    Article  CAS  Google Scholar 

  38. MacCoss, M.J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA 99, 7900–7905 (2002).

    Article  CAS  Google Scholar 

  39. Mindell, J.A., Maduke, M., Miller, C. & Grigorieff, N. Projection structure of a ClC-type chloride channel at 6.5 Å resolution. Nature 409, 219–223 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kathryn Howell and Mike MacCoss for providing insightful criticism for the manuscript. The authors gratefully acknowledge financial support from the American Cancer Society PF-03-065-01-MGO (CCW) and the National Institutes of Health CA81665 and RR11823 (JRY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Yates III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Yates, J. The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21, 262–267 (2003). https://doi.org/10.1038/nbt0303-262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0303-262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing