Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

A New Model For Enzymatic Hydrolysis of Cellulose Based on the Two-Domain Structure of Cellobiohydrolase I

Abstract

We have studied the kinetics of adsorption to macrocrystalline cellulose (Avicel) and its hydrolysis by intact and isolated domains of Trichoderma reesei cellobiohydrolase I (CBH I). The catalytic domain (the core) shows lower adsorption and activity than the complete enzyme, the effect being more pronounced the lower the enzyme concentration and the higher the extent of degradation. Apparent dissociation constants were derived from adsorption isotherms through non-linear regression analysis using a two-site model. Total binding capacities were estimated to be 1.1, 0.17 and 6.0 μmol protein/g Avicel (69, 9.3 and 53 mg/g) for intact enzyme, core and binding domain, respectively. The structural characteristics of cellulose that influence enzyme adsorption are discussed and a model is developed for the action of two-domain cellulases. This model may be applicable to other enzymes such as cutinases and amylases, which also have separate catalytic and binding domains and act on insoluble polymeric substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L. and Mornon, J.-P. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83–95.

    Article  CAS  Google Scholar 

  2. van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R. and Pettersson, G. 1986. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. Separation of functional domains. FEBS Lett. 204: 223–227.

    Article  CAS  Google Scholar 

  3. Knowles, J., Lehtovaara, P. and Teeri, T. 1987. Cellulase families and their genes. Trends Biotechnol. 5: 255–261.

    Article  CAS  Google Scholar 

  4. Gilkes, N.R., Kilburn, D.G., Miller, R.C. Jr. and Warren, R.A.J. 1989. Structural and functional analysis of a bacterial Cellulase by proteolysis. J. Biol. Chem. 264: 17802–17808.

    CAS  PubMed  Google Scholar 

  5. Saloheimo, M., Lehtovaara, P., Penttilä, M., Teeri, T., Ståhlberg, J., Johansson, G., Pettersson, G., Claeyssens, M., Tomme, P. and Knowles, J. 1988. EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63: 11–21.

    Article  CAS  Google Scholar 

  6. Johansson, G., Ståhlberg, J., Lindeberg, G., Engström, Å. and Pettersson, G. 1989. Isolated fungal Cellulase terminal domains and a synthetic minimum analogue bind to cellulose. FEES Lett. 243: 389–393.

    Article  CAS  Google Scholar 

  7. Ong, E., Greenwood, J.M., Gilkes, N.R., Kilburn, D.G., Miller, R.C. Jr. and Warren, R.A.J. 1989. The cellulase-binding domains of cellulases: tools for biotechnology. Trends Biotechnol. 7: 239–243.

    Article  CAS  Google Scholar 

  8. Tomme, P., van Tilbeurgh, H., Pettersson, G., van Damme, J., Vandekerchkove, J., Knowles, J., Teeri, T. and Claeyssens, M. 1988. Studies of the cellulolytic system of Trichoderma reesei QM9414: Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 170: 575–581.

    Article  CAS  Google Scholar 

  9. Ståhlberg, J., Johansson, G. and Pettersson, G. 1988. A binding-site-deficient, catalytically active, core protein of endoglucanase III from the culture filtrate of Trichoderma reesei. Eur. J. Biochem. 173: 179–183.

    Article  Google Scholar 

  10. Kraulis, P., Clore, M., Nilges, M., Jones, A., Pettersson, G., Knowles, J. and Gronenborn, A. 1989. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28: 7241–7257.

    Article  CAS  Google Scholar 

  11. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J. and Jones, A. 1990. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249: 380–386.

    Article  CAS  Google Scholar 

  12. Enari, T-M. 1983. Microbial cellulases, p. 183–223. in: Microbial Enzymes and Biotechnology Fogarty, W.M. (Ed.). Applied Science Publishers, London, New York.

    Google Scholar 

  13. Bhikhabhai, R., Johansson, G. and Pettersson, G. 1984. Isolation of cellulolytic enzymes from Trichoderma reesei QM 9414. J. Appl. Biochem 6: 336–345.

    CAS  PubMed  Google Scholar 

  14. Chanzy, H., Henrissat, B., Vuong, R. and Schülein, M. 1983. The action of 1,4-β-D-glucan cellobiohydrolase on Valonia cellulose micro-crystals. FEBS Lett. 153: 113–118.

    Article  CAS  Google Scholar 

  15. Abuja, P.M., Schmuck, M., Pilz, I., Tomme, P., Claeyssens, M. and Esterbauer, H. 1988. Strcutural and functional domains of cellobiohydrolase I from Trichoderma reesei: A small angle X-ray scattering study of the intact enzyme and its core. Eur. Biophys. J. 15: 339–342.

    Article  CAS  Google Scholar 

  16. Kulshreshtha, A.K. and Dweltz, N.E. 1973. Paracrystalline lattice disorder in cellulose. Reappraisal of the two-phase hypothesis to the analysis of native and hydrolyzed cellulosic materials. J. Polym. Sci., Polym. Phys. Ed. 11: 487–497.

    Article  CAS  Google Scholar 

  17. Henrissat, B., Vigny, B., Buleon, A. and Perez, S. 1988. Possible adsorption sites of cellulases on crystalline cellulose. FEBS Lett. 231: 177–182.

    Article  CAS  Google Scholar 

  18. Chanzy, H. and Henrissat, B. 1985. Unidirectional degradation of Valonia cellulose microcrystals subjected to Cellulase action. FEBS Lett. 184: 285–288.

    Article  CAS  Google Scholar 

  19. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19–23.

    CAS  Google Scholar 

  20. Nelson, N.J. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375–380.

    CAS  Google Scholar 

  21. Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11: 431–441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ståhlberg, J., Johansson, G. & Pettersson, G. A New Model For Enzymatic Hydrolysis of Cellulose Based on the Two-Domain Structure of Cellobiohydrolase I. Nat Biotechnol 9, 286–290 (1991). https://doi.org/10.1038/nbt0391-286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0391-286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing