Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Expansion of Insecticidal Host Range of Bacillus Thuringiensis by in vivo Genetic Recombination

Abstract

We describe a novel approach for the insertion of an insecticidal toxin gene into a resident plasmid in Bacillus thuringiensis (Bt). A gene encoding a coleopteran–specific toxin was cloned within a fragment of IS232 and inserted into a plasmid thermosensitive for replication in Bt. The plasmid was used to transform a Bt strain toxic to lepidoptera, and the transformants were then selected at non–permissive temperature for clones in which the vector had integrated into a copy of IS232 present on a resident plasmid. A second recombination event was selected such that the vector was eliminated and the newly introduced toxin gene was conserved. The resulting strain contained only DNA of Bt origin, and displayed insecticidal activity against both lepidoptera and coleoptera.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lereclus, D., Bourgouin, C., Lecadet, M.-M., Klier, A. and Rapoport, G. 1989. Role, structure, and molecular organization of the genes coding for the parasporal δ-endotoxins of Bacillus thuringiensis, In: Regulation of Procaryotic Development. Smith, I., Slepecky, R. A. and Setlow, P. (Eds). American Society for Microbiology, Washington, D.C. 255–276.

    Google Scholar 

  2. Höfte, H. and Whiteley, H.R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis . Microbiol. Rev. 53: 242–255.

    PubMed  PubMed Central  Google Scholar 

  3. Bone, E.J. and Ellar, D.J. 1989. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol. Lett. 58: 171–178.

    Article  CAS  Google Scholar 

  4. Schurter, W., Geiser, M. and Mathé, D. 1989. Efficient transformation of B. thuringiensis and B. cereus via electroporation: transformation of acrystalliferous strains with a cloned delta-endotoxin gene. Mol. Gen. Genet. 218: 177–181.

    Article  CAS  PubMed  Google Scholar 

  5. Mahillon, J., Chungjatupornchai, W., Decock, J., Dierickx, S., Michiels, F., Peferoen, M. and Joos, H. 1989. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol. Lett. 60: 205–210.

    Article  CAS  Google Scholar 

  6. Lereclus, D., Arantes, O., Chaufaux, J. and Lecadet, M.-M. 1989. Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis . FEMS Microbiol. Lett. 60: 211–218.

    CAS  Google Scholar 

  7. Baum, J.A., Coyle, D.M., Gilbert, M.P., Jany, C.S. and Gawron-Burke, C. 1990. Novel cloning vectors for Bacillus thuringiensis . Appl. Environ. Microbiol. 56: 3420–3428.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Arantes, O. and Lereclus, D. 1991. Construction of cloning vectors for Bacillus thuringiensis . Gene 108: 115–119.

    Article  CAS  PubMed  Google Scholar 

  9. Delécluse, A., Charles, J.-F., Klier, A. and Rapoport, G. 1991. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173: 3374–3381.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lereclus, D., Ribier, J., Klier, A., Menou, G. and Lecadet, M.-M. 1984. A transposon-like structure related to the δ-endotoxin gene of Bacillus thuringiensis . EMBO J. 3: 2561–2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kronstad, J.W. and Whiteley, H.R. 1984. Inverted repeat sequences flank a Bacillus thuringiensis crystal protein gene. J. Bacteriol. 160: 95–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Menou, G., Mahillon, J., Lecadet, M.-M. and Lereclus, D. 1990. Structural and genetic organization of IS232, a new insertion sequence of Bacillus thuringiensis . J. Bacteriol. 172: 6689–6696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sekar, V., Thompson, D.V., Maroney, M.J., Bookland, R.G. and Adang, M.J. 1987. Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis . Proc. Natl. Acad. Sci. USA 84: 7036–7040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McPherson, S.A., Perlak, F.J., Fuchs, R.L., Marrone, P.G., Lavrik, P.B. and Fischhoff, D.A. 1988. Characterization of the coleopteran-specific protein gene of Bacillus thuringiensis var. tenebrionis . Bio/Technology 6: 61–66.

    CAS  Google Scholar 

  15. Adang, M.J., Staver, M.J., Rocheleau, T.A., Leighton, J., Barker, R.F. and Thompson, D.V. 1985. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta . Gene 36: 289–300.

    Article  CAS  PubMed  Google Scholar 

  16. Villafane, R., Bechhofer, D.H., Narayanan, C.S. and Dubnau, D. 1987. Replication control genes of plasmid pE194. J. Bacteriol. 169: 4822–4829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. González, J.M. Jr., Brown, B.J. and Carlton, B.C. 1982. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus . Proc. Natl. Acad. Sci. USA 79: 6951–6955.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gibson, T.J. 1984. Ph.D. thesis. University of Cambridge, Cambridge, UK.

  19. Lecadet, M.-M., Blondel, M.-O. and Ribier, J. 1980. Generalized transduction in Bacillus thuringiensis var. Berliner 1715, using bacteriophage CP54 Ber. J. Gen. Microbiol. 121: 202–212.

    Google Scholar 

  20. Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acid. Res. 7: 1513–1523.

    Article  CAS  Google Scholar 

  21. Lereclus, D., Lecadet, M.-M., Ribier, J. and Dedonder, R. 1982. Molecular relationships among plasmids of Bacillus thuringiensis: conserved sequences through 11 crystalliferous strains. Mol. Gen. Genet. 186: 391–398.

    Article  CAS  PubMed  Google Scholar 

  22. Towbin, H.T., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  24. Sanchis, V., Lereclus, D., Menou, G., Chaufaux, J. and Lecadet, M.-M. 1988. Multiplicity of δ-endotoxin genes with different specificities in Bacillus thuringiensis aizawai 7.29. Mol. Microbiol. 2: 393–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lereclus, D., Vallade, M., Chaufaux, J. et al. Expansion of Insecticidal Host Range of Bacillus Thuringiensis by in vivo Genetic Recombination. Nat Biotechnol 10, 418–421 (1992). https://doi.org/10.1038/nbt0492-418

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0492-418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing