Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Metalloenzyme nitrile hydratase: Structure, regulation, and application to biotechnology

Abstract

Nitrile hydratase (NHase), which catalyzes the hydration of nitriles to amides, has been used in the industrial production of acrylamide and nicotinamide. Recent studies on NHases, which are roughly classified into iron and cobalt types according to the metal involved, have clarified the photoactivation mechanism, the novel Iigand structure of the metal-binding sites, the unique mechanism of the enzyme hyper-induction, and the occurrence of an accessory gene involved in cobalt-containing NHase formation. These detailed analyses have led to the development of biotechnological applications of NHase, including biotransformation and bioremediation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kobayashi, M., Nagasawa, T., and Yamada, H. 1992. Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol. 10: 402–408.

    Article  CAS  Google Scholar 

  2. Yamada, H. and Kobayashi, M. 1996. Nitrile hydratase and its application to industrial production of acryamide. Biosci. Biotech. Biochem. 60: 1391–1400.

    Article  CAS  Google Scholar 

  3. Kobayashi, M. and Shimizu, S. 1994. Versatile nitrilases: nitrile-hydrolyzing enzymes. FEMS Microbiol. Lett. 120: 217–224.

    Article  CAS  Google Scholar 

  4. Komeda, H., Hori, Y., Kobayashi, M., and Shimizu, S. 1996. Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc. Natl. Acad. Sci. USA 93: 10572–10577.

    Article  CAS  Google Scholar 

  5. Asano, Y., Tani, Y., and Yamada, H. 1980. A new enzyme “nitrile hydratase” which degrades acetonitrile in combination with amidase. Agric. Bid. Chem. 44: 2251–2252.

    CAS  Google Scholar 

  6. Nagasawa, T. and Yamada, H. 1989. Microbial transformations of nitriles. Trends Biotechnol. 7: 153–158.

    Article  CAS  Google Scholar 

  7. Sugiura, Y., Kuwahara, J., Nagasawa, T., and Yamada, H. 1987. Nitrile hydratase: the first non-heme iron enzyme with a typical low-spin Fe(lll)-active center. J. Am. Chem. Soc. 109: 5848–5850.

    Article  CAS  Google Scholar 

  8. Sugiura, Y., Kuwahara, J., Nagasawa, T., and Yamada, H. 1988. Significant interaction between low-spin iron(lll) site and pyrroloquinoline quinone in active center of nitrile hydratase. Biochem. Biophys. Res. Commun. 154: 522–528.

    Article  CAS  Google Scholar 

  9. Nelson, M.J., Jin, H., Turner, I.M.Jr., Grove, G., Scarrow, R.C., Brennan, B.A., and Que L. Jr 1991. A novel iron-sulfur center in nitrile hydratase from Brevibacterium sp. J. Am. Chem. Soc. 113: 7072–7073.

    Article  CAS  Google Scholar 

  10. Brennan, B.A., Cummings, J.G., Chase, D.B., Turner, I.M.Jr., and Nelson, M. 1996. Raman spectroscopy of nitrile hydratase, a novel iron-sulfur enzyme. Biochemistry 35: 10068–10077.

    Article  CAS  Google Scholar 

  11. Scarrow, R.C., Brennan, B.A., Cummings, J.G., Jin, H., Duong, D.J., Kindt, J.T., and Nelson, M.J. 1996. X-ray spectroscopy of nitrile hydratase at pH 7 and 9. Biochemistry 35: 10078–10088.

    Article  CAS  Google Scholar 

  12. Jin, H., Turner, I.M.Jr., Nelson, M.J., Gurbiel, R.J., Doan, P.E., and Hoffman, B.M. 1993. Coordination sphere of the ferric ion in nitrile hydratase. J. Am. Chem. Soc. 115: 5290–5291.

    Article  CAS  Google Scholar 

  13. Doan, P.E., Nelson, M.J., Jin, H., and Hoffman, B.M. 1996. An implicit TRIPLE effect in Mims pulsed ENDOR: a sensitive new technique for determining signs of hyper-fine couplings. J. Am. Chem. Soc. 118: 7014–7015.

    Article  CAS  Google Scholar 

  14. Mayaux, J.-F., Cerbelaud, E., Soubrier, R., Faucher, D., and Petre, D., 1990. Purification, cloning, and primary structure of an enatiomer-selective amidase from Brevibacteriumsp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J. Bacteriol. 172: 6764–6773.

    Article  CAS  Google Scholar 

  15. Nakajima, Y., Doi, T., Satoh, Y., Fujiwara, A., and Watanabe, l., 1987. Photoactivation of nitrile hydratase in Corynebacterium sp. N-774. Chemical Letters 9: 1767–1770.

    Article  Google Scholar 

  16. Ikehata, O., Nishiyama, M., Horinouchi, S., and Beppu, T. 1989. Primary structure of a nitrile hydratase deduced from the nucleotide sequence of a Rhodococcusspecies and its expression in Escherichia coli.. Eur. J. Biochem. 181: 563–570.

    Article  CAS  Google Scholar 

  17. Noguchi, T., Hoshino, M., Tsujimura, M., Odaka, M., Inoue, Y., and Endo, I. 1996. Resonance Raman evidence that photodissociation of nitric oxide from the non-heme iron center activates nitrile hydratase from Rhodococcussp. N-771. Biochemistry 35: 16777–16781.

    Article  CAS  Google Scholar 

  18. Honda, J., Nagamune, T., Teratani, Y., Hirata, A., Sasabe, H., and Endo, I. 1992. Photosensitive nitrile hydratase from Rhodococcus sp. N-771; structure and function of the enzyme. Ann. N. Y. Acad. Sci. 672: 29–36.

    Article  CAS  Google Scholar 

  19. Nagamune, T., Kurata, H., Hirata, M., Honda, J., Hirata, A., Endo, I. 1990. Photosensitive phenomena of nitrile hydratase of Rhodococcus sp. N-771. Photochem. Photobiol. 51: 87–90.

    Article  CAS  Google Scholar 

  20. Nagamune, T., Kurata, H., Hirata, M., Honda, J., Koike, H., Ikuchi, M. et al. 1990. Purification of inactivated photoresponsive nitrile hydratase. Biochem. Biophys. Res. Commun. 168: 437–142.

    Article  CAS  Google Scholar 

  21. Honda, J., Kandori, H., Odaka, M., Nagamune, T., Shichida, Y., Sasabe, H., and Endo, l. 1994. Spectroscopic observation of the intramolecular electron transfer in the photoactivation processes of nitrile hydratase. Biochemistry 33: 3577–3583.

    Article  CAS  Google Scholar 

  22. Tsujimura, M., Odaka, M., Nagashima, S., Yohda, M., and Endo, I. 1996. Photoreactive nitrile hydratase: the photoreaction site is located on the α subunit. J. Biochem. 119: 407–113.

    Article  CAS  Google Scholar 

  23. Odaka, M., Noguchi, T., Nagashima, S., Yohda, M., Yabuki, S. Hoshino, M. et al. 1996. Location of the non-heme iron center on the α subunit of photoreactive nitrile hydratase from Rhodococcus sp. N-771. Biochem. Biophys. Res. Commun. 221: 146–150.

    Article  CAS  Google Scholar 

  24. Noguchi, T., Honda, J., Nagamune, T., Sasabe, H., Inoue, Y., and Endo, I. 1995. Photosensitive nitrile hydratase intrinsically possesses nitric oxide bound to the non-heme iron center: evidence by Fourier transform infrared spectroscopy. FEBS Lett. 358: 9–12.

    Article  CAS  Google Scholar 

  25. Odaka, M., Fujii, K., Hoshino, M., Noguchi, T., Tsujimura, M., Nagashima, S. et al. 1997. Activity regulation of photoreactive nitrile hydratase by nitric oxide. J. Am. Chem. Soc. 119: 3785–3791.

    Article  CAS  Google Scholar 

  26. Bonnet, D., Artaud, I., Moali, C. Petre, D., and Mansuy, I. 1997. Highly efficient control of iron-containing nitrile hydratases by stoichiometric amounts of nitric oxide and light. FEBS Lett. 409: 216–220.

    Article  CAS  Google Scholar 

  27. Huang, W., Jia, J., Cummings, J., Nelson, M., Schneider, G., and Lindqvist, Y. 1997. Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold.Structure 5: 691–699.

    Article  CAS  Google Scholar 

  28. Tsujimura, M., Dohmae, N., Odaka, M., Chijimatsu, M., Takio, K., Yohda, M. et al. 1997. Structure of the photoreactive iron center of the nitrile hydratase from Rhodococcus sp N-771: evidence of a novel posttranslational modification in the cysteine ligand. J. Biol. Chem. 272: 29454–29459.

    Article  CAS  Google Scholar 

  29. Nagashima, S., Nakasako, M., Dohmae, N., Tsujimura, M., Takio, K., Odaka, M. et al. 1998. Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat Struct. Biol. 5: 347–351.

    Article  CAS  Google Scholar 

  30. Shoner, S.C., Barnhart, D., and Kovacs, J.A. 1995. A model for the low-spin, non-heme, thiolate-ligated iron site of nitrile hydratase. Inorganic Chemistry 34: 4517–4518.

    Article  CAS  Google Scholar 

  31. Ellison, J.J., Nienstedt, A., Shoner, S.C., Barnhart, D., Cowen, J.A., and Kovacs, J.A. 1998. Reactivity of five-coordinate models for the thiolate-ligated Fe site of nitrile hydratase. J. Am. Chem. Soc. 120: 5691–5700.

    Article  CAS  Google Scholar 

  32. Nagasawa, T., Takeuchi, K., and Yamada, H., 1991. Characterization of a new cobalt-containing nitrile hydratase purified from urea-induced cells of Rhodococcusrhodochrous J1. Eur. J. Biochem. 196: 581–589.

    Article  CAS  Google Scholar 

  33. Komeda, H., Kobayashi, M. and Shimizu, S. 1996. Characterization of the gene cluster of high-molecular-mass nitrile hydratase (H-NHase) induced by its reaction product in Rhodococcus rhodochrousJ1. Proc. Natl. Acad. Sci. USA 93: 4267–4272.

    Article  CAS  Google Scholar 

  34. Komeda, H., Kobayashi, M., and Shimizu, S. 1996. A novel gene cluster including the Rhodococcus rhodochrousJ1 nhlBAgenes encoding a low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. J. Biol. Chem. 271: 15796–15802.

    Article  CAS  Google Scholar 

  35. Brennan, B.A., Alms, G., Nelson, M., Dumey, L.T., and Scarrow, R.C. 1996. Nitrile hydratase from Rhodococcus rhodochrousJ1 contains a non-corrin cobalt ion with two sulfur ligands. J. Am. Chem. Soc. 118: 9194–9195.

    Article  CAS  Google Scholar 

  36. Payne, M.S., Wu, S., Fallon, R.D., Tudor, G., Stieglitz, B., Turner, I.M., and Nelson, M.J. 1997. A stereoselective cobalt-containing nitrile hydratase. Biochemistry 36: 5447–5454.

    Article  CAS  Google Scholar 

  37. Kobayashi, M., Nishiyama, M., Nagasawa, T., Horinouchi, S., Beppu, T., and Yamada, H. 1991. Cloning, nucleotide sequence and expression in Escherichia coliof two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim. Biophys. Ada 1129: 23–33.

    Article  CAS  Google Scholar 

  38. Kobayashi, M., Suzuki, T., Fujita, T., Masuda, M., and Shimizu, S., 1995. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetoni-trile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc. Natl. Acad. Sci. USA 92: 714–718.

    Article  CAS  Google Scholar 

  39. Nishiyama, M., Horinouchi, S., Kobayashi, M., Nagasawa, T., Yamada, H., and Beppu, T., 1991. Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. j. Bacteriol. 173: 2465–2472.

    Article  CAS  Google Scholar 

  40. Kobayashi, M., Komeda, H., Shimizu, S., Yamada, H. and Beppu, T. 1997. Characterization and distribution of IS7764 that exists in the high molecular mass nitrile hydratase gene cluster of the industrial microbe Rhodococcus rhodochrousJ1. Proceedings of the Japan Academy 73B: 104–108.

    Article  CAS  Google Scholar 

  41. Kobayashi, M., Komeda, H., Shimizu, S., Yamada, H., and Beppu, T. et al. 1993. Amidase coupled with low-Mr-nitrile hydratase from Rhodococcus rhodochrousJ1: Sequencing and expression of the gene and purification and characterization of the gene product. Eur. J. Biochem. 217: 327–336.

    Article  CAS  Google Scholar 

  42. Komeda, H., Kobayashi, M. and Shimizu, S. 1997. A novel transporter involved in cobalt uptake.Proc. Natl. Acad. Sci. USA 94: 36–41.

    Article  CAS  Google Scholar 

  43. Eitinger, T., Wolfram, L., Degen, O., and Anthon, C. 1997. A Ni2+ binding motif is the basis of high affinity transport of the Alcaligenes eutrophusnickel permease. J. Biol. Chem. 272: 17139–17144.

    Article  CAS  Google Scholar 

  44. Fu, C., Javedan, S., Moshiri, R., and Maier, R.J. 1994. Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme. Proc. Watt Acad. Sci. USA 91: 5099–5103.

    Article  CAS  Google Scholar 

  45. Mobley, H.L.T., Garner, R.M., Bauerfeind, P. 1995. Helicobacterpylori nickel-transport gene nixA:synthesis of catalytically active urease in Escherichia coliindependent of growth conditions. Mol. Microbiol. 16: 97–109.

    Article  CAS  Google Scholar 

  46. Maeda, M., Hidaka, M., Nakamura, A., Masaki, H., and Uozumi, T., 1994. Cloning, sequencing, and expression of thermophilic Bacillus sp. strain TB-90 urease gene complex in Escherichia coli. J. Bacteriol. 176: 432–442.

    Article  CAS  Google Scholar 

  47. Kobayashi, M., Fujiwara, Y., Goda, M., Komeda, H., and Shimizu, S., 1997. Identification of active sites in amidase: Evolutionary relationship between amide bond- and peptide bond-cleaving enzymes. Proc. Natl. Acad. Sci. USA 94: 11986–11991.

    Article  CAS  Google Scholar 

  48. Battistel, E., Bernardi, A., and Maestri, P. 1997. Enzymatic decontamination of aqueous polymer emulsions containing acrylonitrile. Biotechnology Letters 19: 131–134.

    Article  CAS  Google Scholar 

  49. Wyatt, J.M. and Knowles, C.J. 1995. Microbial degradation of acrylonitrile waste effluents: the degradation of effluents and condensates from the manufacture of acrylonitrile. International Biodeterioration & Biodegradation, pp. 227–248.

    Google Scholar 

  50. Stalker, D.M., McBride, K.E., and Malyj, L.D. 1988. Herbicide resistence in trans-genic plants expressing a bacterial detoxification gene. Science 242: 41–423.

    Article  Google Scholar 

  51. Stalker, D.M., Kiser, J.A., Baldwin, G., Coulombe, B., and Houck, C.M. 1996. Cotton weed control using the BXN(tm) system, pp. 93–105 in Herbicide-resistant crops, Duke, S.O. (ed.). Lewis Publishers, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M., Shimizu, S. Metalloenzyme nitrile hydratase: Structure, regulation, and application to biotechnology. Nat Biotechnol 16, 733–736 (1998). https://doi.org/10.1038/nbt0898-733

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0898-733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing