Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Characterization and culture of human embryonic stem cells

Abstract

Human embryonic stem cells have been defined as self-renewing cells that can give rise to many types of cells of the body. How and whether these cells can be manipulated to replace cells in diseased tissues, used to screen drugs and toxins, or studied to better understand normal development, however, depends on knowing more about their fundamental properties. Many different human embryonic stem cell lines—which are pluripotent, proliferate indefinitely in vitro and maintain a normal, euploid karyotype over extended culture—have now been derived, but whether these cell lines are in fact equivalent remains unclear. It will therefore be important to define robust criteria for the assessment of both existing and newly derived cell lines and for the validation of new culture conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of derivation of hES cell lines from a human blastocyst.
Figure 2: Differentiation of pluripotent hES cells into mesoderm, ectoderm and endoderm.

Similar content being viewed by others

References

  1. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Richards, M., Fong, C.Y., Chan, W.K., Wong, P.C. & Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936 (2002).

    CAS  PubMed  Google Scholar 

  3. Lanzendorf, S.E. et al. Use of human gametes obtained from anonymous donors for the production of human embryonic stem cell lines. Fertil. Steril. 76, 132–137 (2001).

    CAS  PubMed  Google Scholar 

  4. Amit, M. & Itskovitz-Eldor, J. Derivation and spontaneous differentiation of human embryonic stem cells. J. Anat. 200, 225–232 (2002).

    PubMed  PubMed Central  Google Scholar 

  5. Reubinoff, B., Pera, M.F., Fong, C.Y. & Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    CAS  PubMed  Google Scholar 

  6. Klimanskaya, I. et al. Human embryonic stem cells derived without feeder cells. Lancet 365, 1636–1641 (2005).

    CAS  PubMed  Google Scholar 

  7. Lee, J.B. et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol. Reprod. 72, 42–49 (2005).

    CAS  PubMed  Google Scholar 

  8. Hovatta, O. et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18, 1404–1409 (2003).

    PubMed  Google Scholar 

  9. Simon, C. et al. First derivation in Spain of human embryonic stem cell lines: use of long-term cryopreserved embryos and animal-free conditions. Fertil. Steril. 83, 246–249 (2005).

    PubMed  Google Scholar 

  10. Mitalipova, M. et al. Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21, 521–526 (2003).

    CAS  PubMed  Google Scholar 

  11. Cowan, C. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004).

    CAS  PubMed  Google Scholar 

  12. Oh, S.K. et al. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23, 211–219 (2005).

    PubMed  Google Scholar 

  13. Zeng, X. et al. Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22, 292–312 (2004).

    CAS  PubMed  Google Scholar 

  14. Strelchenko, N., Verlinsky, O., Kukharenko, V. & Verlinsky, Y. Morula-derived human embryonic stem cells. Reprod. Biomed. Online 9, 623–629 (2004).

    PubMed  Google Scholar 

  15. Stojkovic, M. et al. Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells 22, 790–797 (2004).

    PubMed  Google Scholar 

  16. Andrews, P.W. et al. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Lab. Invest. 50, 147–162 (1984).

    CAS  PubMed  Google Scholar 

  17. Carpenter, M. et al. Properties of four human ES cell lines maintained in a feeder free culture system. Dev. Dyn. 229, 243–258 (2004).

    CAS  PubMed  Google Scholar 

  18. Kaufman, D.S., Hanson, E.T., Lewis, R.L., Auerbach, R. & Thomson, J.A. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 98, 10716–10721 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosler, E.S. et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229, 259–274 (2004).

    CAS  PubMed  Google Scholar 

  20. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology 227, 271–278 (2000).

    CAS  PubMed  Google Scholar 

  21. Amit, M., Shariki, C., Margulets, V. & Itskovitz-Eldor, J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70, 837–845 (2004).

    CAS  PubMed  Google Scholar 

  22. Okamoto, K. et al. A novel octamer binging transcription factor is differentially expressed in mouse embryonic stem cells. Cell 60, 461–472 (1990).

    CAS  PubMed  Google Scholar 

  23. Rosner, M.H. et al. A POU-domain transcription factir in early stem cells and germ cells of the mammalian embryo. Nature 345, 686–692 (1990).

    CAS  PubMed  Google Scholar 

  24. Yeom, Y.I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996).

    CAS  PubMed  Google Scholar 

  25. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    CAS  PubMed  Google Scholar 

  26. Lebkowski, J.S. et al. Human embryonic stem cells: culture, differentiation, and genetic modification for regenerative medicine applications. Cancer J. 7 suppl. Suppl. 2, S83–S93 (2001).

    PubMed  Google Scholar 

  27. Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol. 19, 5453–5465 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ben-Shushan, E., Thompson, J., Gudas, L. & Bergman, Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol. Cell. Biol. 18, 1866–1878 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kraft, H.J. et al. Oct-4 regulates alternative platelet-derived growth factor alpha receptor gene promoter in human embryonal carcinoma cells. J. Biol. Chem. 271, 12873–12878 (1996).

    CAS  PubMed  Google Scholar 

  30. Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    CAS  PubMed  Google Scholar 

  31. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    CAS  PubMed  Google Scholar 

  32. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645 (1995).

    CAS  PubMed  Google Scholar 

  34. Niwa, H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct. Funct. 26, 137–148 (2001).

    CAS  PubMed  Google Scholar 

  35. Abeyta, M.J. et al. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet. 13, 601–608 (2004).

    CAS  PubMed  Google Scholar 

  36. Bhattacharya, B. et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956–2964 (2004).

    CAS  PubMed  Google Scholar 

  37. Richards, M., Tan, S.P., Tan, J.H., Chan, W.K. & Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51–64 (2004).

    CAS  PubMed  Google Scholar 

  38. Ginis, I. et al. Differences between human and mouse embryonic stem cells. Dev. Biol. 269, 360–380 (2004).

    CAS  PubMed  Google Scholar 

  39. Brandenberger, R., Khrebukova, I., Thies, R.S., Miura, T., Jingli, C., Puri, R., Vasicek, T., Lebkowski, J. & Rao, M. MPSS profiling of human embryonic stem cells. BMC Dev. Biol. 4 (1):10 (2004).

  40. Sperger, J.M. et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl. Acad. Sci. USA 100, 13350–13355 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Buzzard, J.J., Gough, N.M., Crook, J.M. & Coleman, A. Karyotype of human ES cells during extended culture. Nature Biotech. 22 (4), 381–382 (2004).

    CAS  Google Scholar 

  42. Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    CAS  PubMed  Google Scholar 

  43. Brimble, S.N. et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 13, 585–597 (2004).

    CAS  PubMed  Google Scholar 

  44. Tjio, J. & Puck, T. Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. J. Exp. Med. 108, 259–268 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Saksela, E. & Moorhead, P. Aneuploidy in the degenerative phase of serial cultivation of human cell strains. Proc. Natl. Acad. Sci. USA 50, 390–395 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lalande, M. Parental imprinting and human disease. Annu. Rev. Genet. 30, 173–195 (1996).

    CAS  PubMed  Google Scholar 

  47. Hall, J.G. Genomic imprinting: nature and clinical relevance. Annu. Rev. Med. 48, 35–44 (1997).

    CAS  PubMed  Google Scholar 

  48. Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462 (2001).

    CAS  PubMed  Google Scholar 

  49. Rossant, J. Stem cells from the mammalian blastocyst. Stem Cells 19, 477–482 (2001).

    CAS  PubMed  Google Scholar 

  50. Zwaka, T.P. & Thomson, J.A. A germ cell origin of embryonic stem cells? Development 132, 227–233 (2005).

    CAS  PubMed  Google Scholar 

  51. Martin, M.J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005).

    CAS  PubMed  Google Scholar 

  52. Heins, N. et al. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22, 367–376 (2004).

    PubMed  Google Scholar 

  53. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974 (2001).

    CAS  PubMed  Google Scholar 

  54. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  55. Sato, N. et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol. 260, 404–413 (2003).

    CAS  PubMed  Google Scholar 

  56. James, D., Levine, A., Besser, D. & Hemmati-Brivanlou, A. TGFβ/activin/nodal signaling is necessary for the maintence of pluripotency in human embryonic stem cells. Development 132, 1273–1282 (2005).

    CAS  PubMed  Google Scholar 

  57. Xu, R.H. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190 (2005).

    CAS  PubMed  Google Scholar 

  58. Xu, R.H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002).

    CAS  PubMed  Google Scholar 

  59. Pera, M.F. et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117, 1269–1280 (2004).

    CAS  PubMed  Google Scholar 

  60. Wang, L., Li, L., Menendez, P., Cerdan, C. & Bhatia, M. Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood (2005).

  61. Xu, C. et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23, 315–323 (2005).

    CAS  PubMed  Google Scholar 

  62. Kim, S.J. et al. Contribution of the PI3K/Akt/PKB signal pathway to maintenance of self-renewal in human embryonic stem cells. FEBS Lett. 579, 534–540 (2005).

    CAS  PubMed  Google Scholar 

  63. Hwang, W.S. et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303, 1669–1674 (2004).

    CAS  PubMed  Google Scholar 

  64. Park, S.P. et al. Establishment of human embryonic stem cell lines from frozen-thawed blastocysts using STO cell feeder layers. Hum. Reprod. 19, 676–684 (2004).

    PubMed  Google Scholar 

  65. Suss-Toby, E., Gerecht-Nir, S., Amit, M., Manor, D. & Itskovitz-Eldor, J. Derivation of a diploid human embryonic stem cell line from a mononuclear zygote. Hum. Reprod. 19, 670–675 (2004).

    PubMed  Google Scholar 

  66. Baharvand, H. et al. Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst. Differentiation 72, 224–229 (2004).

    PubMed  Google Scholar 

  67. Kim, S.J. et al. Efficient derivation of new human embryonic stem cell lines. Mol. Cells 19, 46–53 (2005).

    CAS  PubMed  Google Scholar 

  68. Li, T., Zhou, C.Q., Mai, Q.Y. & Zhuang, G.L. Establishment of human embryonic stem cell line from gamete donors. Chin. Med. J. (Engl.) 118, 116–122 (2005).

    Google Scholar 

  69. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A. & Benvenisty, N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 97, 11307–11312 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies comprising three embryonic germ layers. Mol. Med. 6, 88–95 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dvash, T. et al. Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum. Reprod. 19, 2875–2883 (2004).

    CAS  PubMed  Google Scholar 

  72. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kehat, I., Gepstein, A., Spiro, A., Itskovitz-Eldor, J. & Gepstein, L. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes. Circ. Res. 91, 659–661 (2002).

    CAS  PubMed  Google Scholar 

  74. Xu, C., Police, S., Rao, N. & Carpenter, M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508 (2002).

    CAS  PubMed  Google Scholar 

  75. Mummery, C. et al. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat. 200, 233–242 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kehat, I. et al. Development of cardiomyocytes from human ES cells. Methods Enzymol. 365, 461–473 (2003).

    CAS  PubMed  Google Scholar 

  77. He, J.Q., Ma, Y., Lee, Y., Thomson, J.A. & Kamp, T.J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. 93, 32–39 (2003).

    CAS  PubMed  Google Scholar 

  78. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    CAS  PubMed  Google Scholar 

  79. Snir, M. et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355–H2363 (2003).

    CAS  PubMed  Google Scholar 

  80. Satin, J. et al. Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J. Physiol. (Lond.) 559, 479–496 (2004).

    CAS  Google Scholar 

  81. Xue, T. et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111, 11–20 (2005).

    PubMed  Google Scholar 

  82. Chadwick, K. et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915 (2003).

    CAS  PubMed  Google Scholar 

  83. Vodyanik, M.A., Bork, J.A., Thomson, J.A. & Slukvin, I.I. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105, 617–626 (2005).

    CAS  PubMed  Google Scholar 

  84. Zhan, X. et al. Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet 364, 163–171 (2004).

    PubMed  Google Scholar 

  85. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 4391–4396 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, L. et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21, 31–41 (2004).

    CAS  PubMed  Google Scholar 

  87. Gerecht-Nir, S. et al. Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells. Dev. Dyn. 232, 484–497 (2005).

    Google Scholar 

  88. Gerecht-Nir, S. et al. Vascular development in early human embryos and in teratomas derived from human embryonic stem cells. Biol. Reprod. 71, 2029–2036 (2004).

    CAS  PubMed  Google Scholar 

  89. Gerecht-Nir, S., Cohen, S., Ziskind, A. & Itskovitz-Eldor, J. Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol. Bioeng. 88, 313–320 (2004).

    CAS  PubMed  Google Scholar 

  90. Schuldiner, M. et al. Induced neuronal differentiation of human embryonic stem cells. Brain Res. 913, 201–205 (2001).

    CAS  PubMed  Google Scholar 

  91. Carpenter, M.K. et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol. 172, 383–397 (2001).

    CAS  PubMed  Google Scholar 

  92. Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O. & Thomson, J.A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

    CAS  PubMed  Google Scholar 

  93. Reubinoff, B.E. et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134–1140 (2001).

    CAS  PubMed  Google Scholar 

  94. Schulz, T.C. et al. Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci. 4, 27 (2003)

    PubMed  PubMed Central  Google Scholar 

  95. Ben-Hur, T. et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22, 1246–1255 (2004).

    PubMed  Google Scholar 

  96. Perrier, A. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 101, 12543–12548 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schulz, T.C. et al. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22, 1218–1238 (2004).

    CAS  PubMed  Google Scholar 

  98. Zeng, X. et al. Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22, 925–940 (2004).

    CAS  PubMed  Google Scholar 

  99. Park, S. et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci. Lett. 359, 99–103 (2004).

    CAS  PubMed  Google Scholar 

  100. Li, X.J. et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221 (2005).

    PubMed  Google Scholar 

  101. Nistor, G.I., Totoiu, M.O., Haque, N., Carpenter, M.K. & Keirstead, H.S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 385–396 (2005).

    PubMed  Google Scholar 

  102. Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697 (2001).

    CAS  PubMed  Google Scholar 

  103. Segev, H., Fishman, B., Ziskind, A., Shulman, M. & Itskovitz-Eldor, J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22, 265–274 (2004).

    CAS  PubMed  Google Scholar 

  104. Rambhatla, L., Chiu, C.P., Kundu, P., Peng, Y. & Carpenter, M.K. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 12, 1–16 (2003).

    PubMed  Google Scholar 

  105. Lavon, N., Yanuka, O. & Benvenisty, N. Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 72, 230–238 (2004).

    CAS  PubMed  Google Scholar 

  106. Gerami-Naini, B. et al. Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinology 145, 1517–1524 (2004).

    CAS  PubMed  Google Scholar 

  107. Clark, A.T. et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. Genet. 13, 727–739 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Krembil Foundation, and an establishment grant from the Canadian Institutes of Health Research awarded to M.K.C. and a postdoctoral fellowship from the Ontario Research and Development Challenge Fund awarded to L.M.H. Special thanks to Jennifer L. Batten for assistance with photomicrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa K Carpenter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, L., Carpenter, M. Characterization and culture of human embryonic stem cells. Nat Biotechnol 23, 699–708 (2005). https://doi.org/10.1038/nbt1102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing