Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently

Abstract

We describe synthetic shuffling, an evolutionary protein engineering technology in which every amino acid from a set of parents is allowed to recombine independently of every other amino acid. With the use of degenerate oligonucleotides, synthetic shuffling provides a direct route from database sequence information to functional libraries. Physical starting genes are unnecessary, and additional design criteria such as optimal codon usage or known beneficial mutations can also be incorporated. We performed synthetic shuffling of 15 subtilisin genes and obtained active and highly chimeric enzymes with desirable combinations of properties that we did not obtain by other directed-evolution methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligonucleotide design strategy for synthetic shuffling of subtilisins.
Figure 2: Comparative phylogenies of synthetic shuffled and fragmentation-shuffled library members.
Figure 3: Activity of synthetic and fragmentation-based libraries.
Figure 4: Sequences of variants with new combinations of physical properties.
Figure 5: A six–amino acid region of subtilisin recombined by synthetic shuffling.

Similar content being viewed by others

References

  1. Crameri, A., Raillard, S.-A., Bermudez, E. & Stemmer, W.P.C. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  Google Scholar 

  2. Chang, C.C. et al. Evolution of a cytokine using DNA family shuffling. Nat. Biotechnol. 17, 793–797 (1999).

    Article  CAS  Google Scholar 

  3. Ness, J.E., delCardayre, S.B., Minshull, J. & Stemmer, W.P.C. Adv. Protein Chem. 55, 261–292 (2000).

    CAS  PubMed  Google Scholar 

  4. Raillard, S.-A. et al. Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem. Biol. 8, 891–898 (2001).

    Article  CAS  Google Scholar 

  5. Moore, G.L., Maranas, C.D., Lutz, S. & Benkovic, S.J. Predicting crossover generation in DNA shuffling. Proc. Natl. Acad. Sci. USA 98, 3226–3231 (2001).

    Article  CAS  Google Scholar 

  6. Sun, F. Modeling DNA shuffling. J. Computational Biol. 6, 77–90 (1999).

    Article  CAS  Google Scholar 

  7. Ness, J.E. et al. DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17, 893–896 (1999).

    Article  CAS  Google Scholar 

  8. Bott, R. et al. in Subtilisin Enzymes: Practical Protein Engineering Vol. 379 (eds. Bott, R. & Betzel, C.) 277–283 (Plenum, New York, 1996).

    Book  Google Scholar 

  9. Rao, M.B., Tanksale, A.M., Ghatge, M.S. & Deshpande, V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635 (1998).

    Article  CAS  Google Scholar 

  10. Gupta, R., Beg, Q.K. & Lorenz, P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15–32 (2002).

    Article  CAS  Google Scholar 

  11. Bryan, P.N. Protein engineering of subtilisin. Biochim. Biophys. Acta 1543, 203–222 (2000).

    Article  CAS  Google Scholar 

  12. Siezen, R.J., de Vos, W.M., Leunissen, J.A.M. & Dijkstra, B.W. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteases. Protein Eng. 4, 719–737 (1991).

    Article  CAS  Google Scholar 

  13. Graycar, T., Knapp, M., Ganshaw, G., Dauberman, J. & Bott, R. Engineered Bacillus lentus subtilisins having altered flexibility. J. Mol. Biol. 292, 97–109 (1999).

    Article  CAS  Google Scholar 

  14. Roberts, R.W. & Szostak, J.W. RNA–peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  Google Scholar 

  15. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  Google Scholar 

  16. Keefe, A.D. & Szostak, J.W. Functional proteins from a random-sequence library. Nature 410, 715–718 (2001).

    Article  CAS  Google Scholar 

  17. Wilson, D.S., Keefe, A.D. & Szostak, J.W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98, 3750–3755 (2001).

    Article  CAS  Google Scholar 

  18. Bryan, P.N. et al. Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins 1, 326–334 (1986).

    Article  CAS  Google Scholar 

  19. Gilliland, G.L., Gallagher, D.T., Alexander, P. & Bryan, P.N. in Subtilisin Enzymes: Practical Protein Engineering (eds. Bott, R. & Betzel, C.) 159–169 (Plenum Press, New York, 1996).

    Book  Google Scholar 

  20. Ostermeier, M., Shim, J.H. & Benkovic, S.J. A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205–1209 (1999).

    Article  CAS  Google Scholar 

  21. Sieber, V., Martinez, C.A. & Arnold, F.H. Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol. 19, 456–460 (2001).

    Article  CAS  Google Scholar 

  22. Kikuchi, M., Ohnishi, K. & Harayama, S. Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236, 159–167 (1999).

    Article  CAS  Google Scholar 

  23. Kikuchi, M., Ohnishi, K. & Harayama, S. An effective family shuffling method using single-stranded DNA. Gene 243, 133–137 (2000).

    Article  CAS  Google Scholar 

  24. Coco, W.M. et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19, 354–359 (2001).

    Article  CAS  Google Scholar 

  25. Gibbs, M.D., Nevalainen, K.M.H. & Bergquist, P.L. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene 271, 13–20 (2001).

    Article  CAS  Google Scholar 

  26. Voigt, C.A., Mayo, S.L., Arnold, F.H. & Wang, Z.-G. Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA 98, 3778–3783 (2001).

    Article  CAS  Google Scholar 

  27. Stemmer, W.P.C., Crameri, A., Ha, K.D., Brennan, T.M. & Heyneker, H.L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    Article  CAS  Google Scholar 

  28. Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994).

    Article  CAS  Google Scholar 

  29. Shafikhani, S., Siegel, R.A., Ferrari, E. & Schellenberger, V. Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Biotechniques 23, 304–310 (1997).

    Article  CAS  Google Scholar 

  30. Rice, J.A. Mathematical Statistics and Data Analysis Edn 2 (Duxbury Press, Belmont, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank Mark Welch for screening and automation assistance, Andreas Crameri and Pim Stemmer for advice on library design and assembly parameters, Troy Obrero and Walker Lutringer for DNA sequencing, Ajoy Roy for statistical advice, and Allan Svendsen and Bo Hammer for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ness, J., Kim, S., Gottman, A. et al. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat Biotechnol 20, 1251–1255 (2002). https://doi.org/10.1038/nbt754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing