Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrochemical DNA sensors

Abstract

Electrochemistry-based sensors offer sensitivity, selectivity and low cost for the detection of selected DNA sequences or mutated genes associated with human disease. DNA-based electrochemical sensors exploit a range of different chemistries, but all take advantage of nanoscale interactions between the target in solution, the recognition layer and a solid electrode surface. Numerous approaches to electrochemical detection have been developed, including direct electrochemistry of DNA, electrochemistry at polymer-modified electrodes, electrochemistry of DNA-specific redox reporters, electrochemical amplifications with nanoparticles, and electrochemical devices based on DNA-mediated charge transport chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General DNA biosensor design.
Figure 2: Schematic representation of guanine oxidation mediated by a ruthenium complex in solution.
Figure 3: Electrochemical 'sandwich' assays.
Figure 4: Scheme for an enzymatic amplification of DNA hybridization signal.
Figure 5: Electrochemical assay for mismatches through DNA-mediated charge transport.
Figure 6: Electrochemically based DNA sensors for protein analytes.
Figure 7: High-sensitivity conductivity assay.

Similar content being viewed by others

References

  1. Ramsey, M. DNA chips: state-of-the-art. Nat. Biotechnol. 16, 40–44 (1998).

    Article  Google Scholar 

  2. Gooding, J.J. Electrochemical DNA hybridization biosensor Electroanalysis 14, 1149–1156 (2002).

    Article  CAS  Google Scholar 

  3. Palecek, E. & Jelen, F. Electrochemistry of nucleic acids and development of DNA sensors. Crit. Rev. Anal. Chem. 3, 261–270 (2002).

    Article  Google Scholar 

  4. Wang, J. Electrochemical nucleic acid biosensors. Anal. Chim. Acta 469, 63–71 (2002).

    Article  CAS  Google Scholar 

  5. Fodor, S.P.A. DNA sequencing—massively parallel genomics. Science 277, 393–403 (1997).

    Article  CAS  Google Scholar 

  6. Epstein, J.R., Biran, I. & Walt, D.R. Fluorescence-based nucleic acid detection and microarrays. Anal. Chim. Acta 469, 3–36 (2002).

    Article  CAS  Google Scholar 

  7. Marshall, A. & Hodgson, J. DNA chips: an array of possibilities. Nat. Biotechnol. 16, 27–31 (1998).

    Article  CAS  Google Scholar 

  8. Ji, J. & Manak, M. Genotyping of single nucleotide polymorphisms for epidemiological studies: a review of current methods. J. Clin. Ligand Assay 25, 199–210 (2002).

    Google Scholar 

  9. Broude, N.E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends Biotechnol. 20, 249–256 (2002).

    Article  CAS  Google Scholar 

  10. Epstein, J.R., Leung, A.P.K., Lee, K.H. & Walt, D.R. High-density, microsphere-based fiber optic DNA microarrays. Biosensors Bioelectron. 18, 541–546 (2003).

    Article  CAS  Google Scholar 

  11. Fryer, R.M. et al. Global analysis of gene expression: methods, interpretation, and pitfalls. Exp. Nephrol. 10, 64–74 (2002).

    Article  CAS  Google Scholar 

  12. McDonnell, J.M. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5, 572–577 (2001).

    Article  CAS  Google Scholar 

  13. Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A. & Letsinger, R.L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964 (1998).

    Article  CAS  Google Scholar 

  14. Taton, T.A., Mirkin, C.A. & Letsinger, R.L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  CAS  Google Scholar 

  15. Wang, J., Jiang, M. & Palecek, E. Real-time monitoring of enzymatic cleavage of nucleic acids using a quartz crystal microbalance. Bioelectrochem. Bioenergetics 4, 477–480 (1999).

    Article  Google Scholar 

  16. Patolsky, F., Lichtenstein, A. & Willner, I. Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. J. Am. Chem. Soc. 123, 5194–5205 (2001).

    Article  CAS  Google Scholar 

  17. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  Google Scholar 

  18. Wang, J. Portable electrochemical systems. Trends Anal. Chem. 21, 226–232 (2002).

    Article  CAS  Google Scholar 

  19. Palecek, E. Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188, 656–657 (1960).

    Article  CAS  Google Scholar 

  20. Palecek, E. Adsorptive transfer stripping voltammetry—determination of nanogram quantities of DNA immobilized at the electrode surface. Anal. Biochem. 170, 421–431 (1988).

    Article  CAS  Google Scholar 

  21. Singhal, P. & Kuhr, W.G. Ultrasensitive voltammetric detection of underivatized oligonucleotides and DNA. Anal. Chem. 69, 4828–4832 (1997).

    Article  CAS  Google Scholar 

  22. Jelen, F., Yosypchuk, B., Kourilova, A., Novotny, L. & Palecek, E. Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. Anal. Chem. 74, 4788–4793 (2002).

    Article  CAS  Google Scholar 

  23. Wang, J. & Kawde, A.B. Amplified label-free electrical detection of DNA hybridization. Analyst 127, 383–386 (2002).

    Article  CAS  Google Scholar 

  24. Ozkan, D. et al. Allele-specific genotype detection of factor V Leiden mutation from polymerase chain reaction amplicons based on label-free electrochemical genosensor. Anal. Chem. 74, 5931–5936 (2002).

    Article  CAS  Google Scholar 

  25. Kerman, K. et al. Label-free bioelectronic detection of point mutation by using peptide nucleic acid probes. Electroanalysis 15, 667–670 (2003).

    Article  CAS  Google Scholar 

  26. Yang, I.V. & Thorp, H.H. Modification of indium tin oxide electrodes with repeat polynucleotides: electrochemical detection of trinucleotide repeat expansion. Anal. Chem. 73, 5316–5322 (2001).

    Article  CAS  Google Scholar 

  27. Armistead, P.M. & Thorp, H.H. Electrochemical detection of gene expression in tumor samples: overexpression of RAK nuclear tyrosine kinase. Bioconj. Chem. 13, 172–176 (2002).

    Article  CAS  Google Scholar 

  28. Yang, I.V., Ropp, P.A. & Thorp, H.H. Toward electrochemical resolution of two genes on one electrode: using 7-deaza analogues of guanine and adenine to prepare PCR products with differential redox activity. Anal. Chem. 74, 347–354 (2002).

    Article  CAS  Google Scholar 

  29. Palecek, E., Fojta, M. & Jelen, F. New approaches in the development of DNA sensors: hybridization and electrochemical detection of DNA and RNA at two different surfaces. Bioelectrochemistry 56, 85–90 (2002).

    Article  CAS  Google Scholar 

  30. Fojta, M. et al. Two-surface strategy in electrochemical DNA hybridization assays: detection of osmium-labeled target DNA at carbon electrodes. Electroanalysis 15, 431–440 (2003).

    Article  CAS  Google Scholar 

  31. Umek, R.M. et al. Electronic detection of nucleic acids—a versatile platform for molecular diagnostics. J. Mol. Diag. 3, 74–84 (2001).

    Article  CAS  Google Scholar 

  32. Yu, C.J. et al. Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. J. Am. Chem. Soc. 123, 11155–11161 (2001).

    Article  CAS  Google Scholar 

  33. Ozsoz, M. et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal. Chem. 75, 2181–2187 (2003).

    Article  CAS  Google Scholar 

  34. Wang, J., Liu, G.D. & Merkoci, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J. Am. Chem. Soc. 125, 3214–3215 (2003).

    Article  CAS  Google Scholar 

  35. Willner, I. & Willner, B. Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure Appl. Chem. 74, 1773–1783 (2002).

    Article  CAS  Google Scholar 

  36. Campbell, C.N., Gal, D., Cristler, N., Banditrat, C. & Heller, A. Enzyme-amplified amperometric sandwich test for RNA and DNA. Anal. Chem. 74, 158–162 (2002).

    Article  CAS  Google Scholar 

  37. Dequaire, M. & Heller, A. Screen printing of nucleic acid detecting carbon electrodes. Anal. Chem. 74, 4370–4377 (2002).

    Article  CAS  Google Scholar 

  38. Patolsky, F., Katz, E. & Willner, I. Amplified DNA detection by electrogenerated biochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator. Angew. Chem. Int. Edn. 41, 3398–3402 (2002).

    Article  CAS  Google Scholar 

  39. Patolsky, F., Lichtenstein, A. & Willner, I. Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes. Chem. Eur. J. 9, 1137–1145 (2003).

    Article  CAS  Google Scholar 

  40. Wang, J., Kawde, A.N., Musameh, M. & Rivas, G. Dual enzyme electrochemical coding for detecting DNA hybridization. Analyst 127, 1279–1282 (2002).

    Article  CAS  Google Scholar 

  41. Millan, K.M. & Mikkelsen, S.R. Sequence-selective biosensor for DNA-based on electroactive hybridization indicators. Anal. Chem. 65, 2317–2323 (1993).

    Article  CAS  Google Scholar 

  42. Steel, A.B., Herne, T.M. & Tarlov, M.J. Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 70, 4670–4677 (1998).

    Article  CAS  Google Scholar 

  43. Boon, E.M. & Barton, J.K. Charge transport in DNA. Curr. Opin. Struct. Biol. 12, 320–329 (2002).

    Article  CAS  Google Scholar 

  44. Kelley, S.O., Barton, J.K., Jackson, N.M. & Hill, M.G. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconj. Chem. 8, 31–37 (1997).

    Article  CAS  Google Scholar 

  45. Kelley, S.O., Jackson, N.M., Hill, M.G. & Barton, J.K. Long-range electron transfer through DNA films. Angew. Chem. Int. Edn. 38, 941–945 (1999).

    Article  CAS  Google Scholar 

  46. Boon, E.M., Ceres, D.M., Drummond, T.G., Hill, M.G. & Barton, J.K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nat. Biotechnol. 18, 1096–1100 (2000).

    Article  CAS  Google Scholar 

  47. Kelley, S.O., Boon, E.M., Barton, J.K., Jackson, N.M. & Hill, M.G. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 27, 4830–4837 (1999).

    Article  CAS  Google Scholar 

  48. Ozsoz, M., Erdem, A., Kara, P., Kerman, K. & Ozkan, D. Electrochemical biosensor for the detection of interaction between arsenic trioxide and DNA based on guanine signal. Electroanalysis 15, 613–619 (2003).

    Article  CAS  Google Scholar 

  49. Cady, N., Stelick, S. & Batt, C.A. Nucleic acid purification using microfabricated silicon structures. Biosensors Bioelectron. (in press).

  50. Boon, E.M., Salas, J.E. & Barton, J.K. An electrical probe of protein–DNA interactions on DNA-modified surfaces. Nat. Biotechnol. 20, 282–286 (2002).

    Article  CAS  Google Scholar 

  51. Grody, W.W. et al. Laboratory standards and guidelines for population-based cystic fibrosis carrier screening. Genetics Med. 3, 149–154 (2001).

    Article  CAS  Google Scholar 

  52. Heller, A. Plugging metal connectors into enzymes. Nat. Biotechnol. 21, 631–632 (2003).

    Article  CAS  Google Scholar 

  53. Wang, J., Xu, D.K., Kawde, A.N. & Polsky, R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 73, 5576–5581 (2001).

    Article  CAS  Google Scholar 

  54. Wang, J., Polsky, R. & Xu, D.K. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir 17, 5739–5741 (2001).

    Article  CAS  Google Scholar 

  55. Wang, J., Xu, D.K. & Polsky, R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc. 124, 4208–4209 (2002).

    Article  CAS  Google Scholar 

  56. Park, S.J., Taton, T.A. & Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 (2002).

    Article  CAS  Google Scholar 

  57. Wang, J., Polsky, R., Merkoci, A. & Turner, K.L. “Electroactive beads” for ultrasensitive DNA detection. Langmuir 19, 989–991 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Institutes of Health for their financial support of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline K Barton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drummond, T., Hill, M. & Barton, J. Electrochemical DNA sensors. Nat Biotechnol 21, 1192–1199 (2003). https://doi.org/10.1038/nbt873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing