Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The potential environmental impact of engineered nanomaterials

A Corrigendum to this article was published on 01 June 2004

Abstract

With the increased presence of nanomaterials in commercial products, a growing public debate is emerging on whether the environmental and social costs of nanotechnology outweigh its many benefits. To date, few studies have investigated the toxicological and environmental effects of direct and indirect exposure to nanomaterials and no clear guidelines exist to quantify these effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission electron microscopy (TEM) of engineered nanoparticles.
Figure 2: The diverse formats of engineered nanomaterials.

Similar content being viewed by others

References

  1. Matsunaga, T. & Sakaguchi, T. Molecular mechanism of magnet formation in bacteria. J. Biosci. Bioeng. 90, 1–13 (2000).

    CAS  PubMed  Google Scholar 

  2. Matsunaga, T. Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol. Bioeng. 70, 704–709 (2000).

    CAS  PubMed  Google Scholar 

  3. Okamura, Y., Takeyama, H. & Matsunga, T. Two-dimensional analysis of proteins specific to the bacterial magnetic particle membrane from Magnetospirillum sp. AMB-1. Appl. Biochem. Biotech. 8486, 441–446 (2000).

    Google Scholar 

  4. Kan, A.T. & Tomson, M.B. Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ. Toxicol. Chem. 9, 253–263 (1990).

    CAS  Google Scholar 

  5. Kersting, A.B. et al. Migration of plutonium in ground water at the Nevada Test Site. Nature 397, 56–59 (1999).

    CAS  Google Scholar 

  6. Arnall, A.H. Future Technologies, Today's Choices (Greenpeace Environmental Trust, London, 2003).

  7. ETC Group Report. No small matter II: the case for a global moratorium (ETC Group, Ottawa, Canada, 2003).

  8. Lesher, Sara. Will nanotech control us, or can it be controlled? The Hill, http://www.thehill.com/, 7 May 2003.

  9. Liddle, R. Committee meets to investigate nanoscience. The Guardian, London, July 30, 2003.

  10. Prince sparks row over nanotechnology (Commentary). The Guardian, London, April 28, 2003.

  11. Tremblay, J.F. Fullerenes by the ton. Chem. Eng. News 81, 13–14 (2003).

    Google Scholar 

  12. Tremblay, J.F. Mitsubishi chemical aims at breakthrough. Chem. Eng. News 80, 16–17 (2002).

    Google Scholar 

  13. Borm, P.J.A. Particle toxicology: from coal mining to nanotechnology. Inhalation Toxicol. 14, 311–324 (2002).

    CAS  Google Scholar 

  14. Castranova, V. From coal mine dust to quartz: mechanisms of pulmonary pathogenicity. Inhalation Toxicol. 12, 7–14 (2000).

    CAS  Google Scholar 

  15. Courrier, H.M., Butz, N. & Vandamme, T.F. Pulmonary drug delivery systems: recent developments and prospects. Critical Rev. Ther. Drug Carrier Syst. 19, 425–498 (2002).

    CAS  Google Scholar 

  16. Chew, N.Y.K. & Chan, H.K. The role of particle properties in pharmaceutical powder inhalation formulations. J. Aerosol Med.-Deposition Clearance Effects Lung 15, 325–330 (2002).

    CAS  Google Scholar 

  17. Kawashima, Y., Serigano, T., Hino, T., Yamamoto, H. & Takeuchi, H. A new powder design method to improve inhalation efficiency of pranlukast hydrate dry powder aerosols by surface modification with hydroxypropylmethylcellulose phthalate nanospheres. Pharm. Res. 15, 1748–1752 (1998).

    CAS  PubMed  Google Scholar 

  18. Edwards, M.F. & Instone, T. Particulate products—their manufacture and use. Powder Technol. 119, 9–13 (2001).

    CAS  Google Scholar 

  19. Shefer, S. & Shefer, A. Controlled release systems for skin care applications. J. Cosmet. Sci. 52, 350–353 (2001).

    Google Scholar 

  20. Spiertz, C. & Korstanje, C. A method for assessing the tactile properties of dermatological cream bases. J. Dermatol. Treatment 6, 155–157 (1995).

    Google Scholar 

  21. Federal Register. Sunscreen drug products for over-the-counter human use; final monograph. 64, no. 98, 27,666 (US Government Printing Office, Washington, DC, 1999).

  22. Lademann, J. et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol. Appl. Skin Physiol. 12, 247–256 (1999).

    CAS  PubMed  Google Scholar 

  23. Schulz, J. et al. Distribution of sunscreens on skin. Advanced Drug Del. Rev. 54, S157–S163 (2002).

    CAS  Google Scholar 

  24. Bahnemann, D.W., Kholuiskaya, S.N., Dillert, R., Kulak, A.I. & Kokorin, A.I. Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Appl. Catalysis B-Environmental 36, 161–169 (2002).

    CAS  Google Scholar 

  25. Malato, S., Blanco, J., Vidal, A. & Richter, C. Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl. Catalysis B-Environ. 37, 1–15 (2002).

    CAS  Google Scholar 

  26. Ricci, A., Chretien, M.N., Maretti, L. & Scaiano, J.C. TiO2-promoted mineralization of organic sunscreens in water suspension and sodium dodecyl sulfate micelles. Photochem. Photobiol. Sci. 2, 487–492 (2003).

    CAS  PubMed  Google Scholar 

  27. Picatonotto, T., Vione, D., Carlotti, M.E. & Gallarate, M. Photocatalytic activity of inorganic sunscreens. J. Dispersion Sci. Technol. 22, 381–386 (2001).

    CAS  Google Scholar 

  28. Rossatto, V., Picatonotto, T., Vione, D. & Carlotti, M.E. Behavior of some rheological modifiers used in cosmetics under photocatalytic conditions. J. Dispersion Sci. Technol. 24, 259–271 (2003).

    CAS  Google Scholar 

  29. Hidaka, H., Horikoshi, S., Serpone, N. & Knowland, J. In vitro photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation. J. Photochem. Photobiol. A-Chem. 111, 205–213 (1997).

    CAS  Google Scholar 

  30. Dunford, R. et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 418, 87–90 (1997).

    CAS  PubMed  Google Scholar 

  31. Wiesner, M., Characklis, G. & Brejchova, D. Metals in Surface Waters (eds., Allen, H., Garrison, A., & Luther, G.L. (Ann Arbor Press, Ann Arbor, MI, 1998).

    Google Scholar 

  32. U.S. House Committee on Science. Hearing on Societal Implications of Nanotechnology, April 9, 2003. 108th Congress (House Committee on Science, Washington, DC, 2003).

  33. McHedlov-Petrossyan, N.O., Klochkov, V.K. & Andrievsky, G.V. Colloidal dispersions of fullerene C-60 in water: some properties and regularities of coagulation by electrolytes. J. Chem. Soc.-Faraday Trans. 93, 4343–4346 (1997).

    CAS  Google Scholar 

  34. Andrievsky, G.V., Klochkov, V.K., Bordyuh, A.B. & Dovbeshko, G.I. Comparative analysis of two aqueous-colloidal solutions of C-60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem. Phys. Lett. 364, 8–17 (2002).

    CAS  Google Scholar 

  35. Alargova, R.G., Deguchi, S. & Tsujii, K. Stable colloidal dispersions of fullerenes in polar organic solvents. J. Am. Chem. Soc. 123, 10460–10467 (2001).

    CAS  PubMed  Google Scholar 

  36. Deguchi, S., Alargova, R.G. & Tsujii, K. Stable dispersions of fullerenes, C-60 and C-70, in water. Preparation and characterization. Langmuir 17, 6013–6017 (2001).

    CAS  Google Scholar 

  37. Henry, C. Quantum dot advances—Studies show that nanoparticles have potential biological applications. Chem. Eng. News 81, 10 (2003).

  38. McMurry, P.H. & Woo, K.S. Size distributions of 3-100-nm urban Atlanta aerosols: Measurement and observations. J. Aerosol Med.-Deposition Clearance Effects Lung 15, 169–178 (2002).

    Google Scholar 

  39. Nemmar, A. et al. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am. J. Resp. Critical Care Med. 164, 1665–1668 (2001).

    CAS  Google Scholar 

  40. Smith, S., Cheng, U.S. & Yeh, H.C. Deposition of ultrafine particles in human tracheobronchial airways of adults and children. Aerosol Sci. Technol. 35, 697–709 (2001).

    CAS  Google Scholar 

  41. Dockery, D.W. et al. An association between air-pollution and mortality in 6 United States cities. N. Engl. J. Med. 329, 1753–1759 (1993).

    CAS  PubMed  Google Scholar 

  42. Wichmann, H.E. et al. Daily mortality and fine and ultrafine particles in Frankfurt Germany. Part I: Role of particle number and particle mass, vol. 98 (HEI, Cambridge, MA, 2000).

  43. Ferin, J., Oberdorster, G., Soderholm, S.C. & Gelein, R. Pulmonary tissue access of ultrafine particles. J. Aerosol Med.-Dep. Clearance Effects Lung 4, 57–68 (1991).

    Google Scholar 

  44. Donaldson, K., Stone, V., Gilmour, P.S., Brown, D.M. & MacNee, W.N.E. Ultrafine particles: mechanisms of lung injury. Phil. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 358, 2741–2748 (2000).

    CAS  Google Scholar 

  45. Oberdorster, G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74, 1–8 (2001).

    CAS  PubMed  Google Scholar 

  46. Murphy, S.A.M., BeruBe, K.A. & Richards, R.J. Bioreactivity of carbon black and diesel exhaust particles to primary Clara and type II epithelial cell cultures. Occup. Environ. Med. 56, 813–819 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kleeman, M.J., Schauer, J.J. & Cass, G.R. Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ. Sci. Technol. 34, 1132–1142 (2000).

    CAS  Google Scholar 

  48. Yang, A. In vitro cytotoxicity testing with fluorescence-based assays in cultured human lung and dermal cells. Cell Biol. Toxicol. 18, 97–108 (2002).

    CAS  PubMed  Google Scholar 

  49. Warheit, D.B. & Hartsky, M.A.N.E. Initiating the risk assessment process for inhaled particulate materials—development of short term inhalation bioassays. J. Exposure Anal. Environ. Epidemiol. 7, 313–325 (1997).

    CAS  Google Scholar 

  50. Warheit, D.B., McHugh, T.A. & Hartsky, M.A. Differential pulmonary responses in rats inhaling crystalline, colloidal or amorphous silica dusts. Scand. J. Work Environ. Health 21, 19–21 (1995).

    CAS  PubMed  Google Scholar 

  51. Bolton, J.D. Problems with wear in artificial orthopaedic joint replacements: a review. Advanced Materials Forum I. Key Eng. Mater. 2302, 447–454 (2002).

    Google Scholar 

  52. Ingham, E. & Fisher, J. Biological reactions to wear debris in total joint replacement. Proc. Inst. Mech. Eng. [H] 214, 21–37 (2000).

    CAS  Google Scholar 

  53. Kraft, C.N., Diedrich, O., Burian, B., Schmitt, O. & Wimmer, M.A. Microvascular response of striated muscle to metal debris—a comparative in vivo study with titanium and stainless steel. J. Bone Joint Surg. Br. 85B, 133–141 (2003).

    Google Scholar 

  54. Hirakawa, K., Bauer, T.W., Stulberg, B.N., Wilde, A.H. & Borden, L.S. Characterization of debris adjacent to failed knee implants of 3 different designs. Clin. Orthop. 331, 151–158 (1996).

    Google Scholar 

  55. Benz, E.B. et al. Transmission electron microscopy of intracellular particles of polyethylene from joint replacement prostheses: size distribution and cellular response. Biomaterials 22, 2835–2842 (2001).

    CAS  PubMed  Google Scholar 

  56. Miyaguchi, M. et al. Human monocyte response to retrieved polymethylmethacrylate particles. J. Biomed. Mater. Res. 62, 331–337 (2002).

    CAS  PubMed  Google Scholar 

  57. Lee, J.M. et al. Size of metallic and polyethylene debris particles in failed cemented total hip replacements. J. Bone Joint Surg. Br. 74, 380–384 (1992).

    CAS  PubMed  Google Scholar 

  58. Sabokbar, A., Pandey, R. & Athanasou, N.A. The effect of particle size and electrical charge on macrophage-osteoclast differentiation and bone resorption. J. Mater. Sci. Mater. Med. 14, 731–738 (2003).

    CAS  PubMed  Google Scholar 

  59. DeHeer, D.H., Engels, J.A., DeVries, A.S., Knapp, R.H. & Beebe, J.D. In situ complement activation by polyethylene wear debris. J. Biomed. Mater. Res. 54, 12–19 (2001).

    CAS  PubMed  Google Scholar 

  60. Wooley, P.H., Nasser, S. & Fitzgerald, R.H. The immune response to implant materials in humans. Clinical Orthop. 326, 63–70 (1996).

    Google Scholar 

  61. Olivier, V., Duval, J.L., Hindie, M., Pouletaut, P. & Nagel, M.D. Comparative particle-induced cytotoxicity toward macrophages and fibroblasts. Cell Biol. Toxicol. 19, 145–159 (2003).

    CAS  PubMed  Google Scholar 

  62. Boynton, E.L. et al. The effect of polyethylene particle chemistry on human monocyte–macrophage function in vitro. J. Biomed. Mater. Res. 52, 239–245 (2000).

    CAS  PubMed  Google Scholar 

  63. Visuri, T. & Koskenvuo, M. Cancer risk after Mckee-Farrar total hip-replacement. Orthopedics 14, 137–142 (1991).

    CAS  PubMed  Google Scholar 

  64. Wang, I.C. et al. C-60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J. Med. Chem. 42, 4614–4620 (1999).

    CAS  PubMed  Google Scholar 

  65. Monti, D. et al. C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 277, 711–717 (2000).

    CAS  PubMed  Google Scholar 

  66. Foley, S. et al. Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 294, 116–119 (2002).

    CAS  PubMed  Google Scholar 

  67. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. Semiconductor nanocrystals as fluorescence biological labels. Science 5383, 2013–2016 (1998).

    Google Scholar 

  68. Chan, W.C.W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    CAS  PubMed  Google Scholar 

  69. Xu, Z., Suo, Z.Y., Wei, X.W. & Zhu, D.X. Progress in research of fullerenes' biological activities. Prog. Biochem. Biophys. 25, 130–135 (1998).

    CAS  Google Scholar 

  70. Da Ros, T. & Prato, M. Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 8, 663–669 (1999).

    Google Scholar 

  71. Kai, Y., Komazawa, Y., Miyajima, A., Miyata, N. & Yamakoshi, Y. 60 Fullerene as a novel photoinduced antibiotic. Fuller. Nanotub. Carbon Nanostruct. 11, 79–87 (2003).

    CAS  Google Scholar 

  72. Tsao, N., Kanakamma, P.P., Luh, T.Y., Chou, C.K. & Lei, H.Y. Inhibition of Escherichia coli-induced meningitis by carboxyfullerence. Antimicrob. Agents Chemother. 43, 2273–2277 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakajima, N., Nishi, C., Li, F.M. & Ikada, Y. Photo-induced cytotoxicity of water-soluble fullerene. Fullerene Sci. Technol. 4, 1–19 (1996).

    CAS  Google Scholar 

  74. Sakai, A., Yamakoshi, Y. & Miyata, N. Visible light irradiation of 60 fullerene causes killing and initiation of transformation in BALB/3T3 cells. Fullerene Sci. Technol. 7, 743–756 (1999).

    CAS  Google Scholar 

  75. Yang, X.L., Fan, C.H. & Zhu, H.S. Photo-induced cytotoxicity of malonic acid C-60 fullerene derivatives and its mechanism. Toxicol. In Vitro 16, 41–46 (2002).

    CAS  PubMed  Google Scholar 

  76. Moriguchi, T., Yano, K., Hokari, S. & Sonoda, M. Effect of repeated application of C-60 combined with UVA radiation onto hairless mouse back skin. Fullerene Sci. Technol. 7, 195–209 (1999).

    CAS  Google Scholar 

  77. Rajagopalan, P., Wudl, F., Schinazi, R.F. & Boudinot, F.D. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob. Agents Chemother. 40, 2262–2265 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsuchiya, T., Oguri, I., Yamakoshi, Y.N. & Miyata, N. Novel harmful effects of 60 fullerene on mouse embryos in vitro and in vivo. FEBS Lett. 393, 139–145 (1996).

    PubMed  Google Scholar 

  79. Ueng, T.H., Kang, J.J., Wang, H.W., Cheng, Y.W. & Chiang, L.Y. Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C-60. Toxicol. Lett. 93, 29–37 (1997).

    CAS  PubMed  Google Scholar 

  80. Chen, H.H.C. et al. Renal effects of water-soluble polyarylsulfonated C-60 in rats with an acute toxicity study. Fullerene Sci. Technol. 5, 1387–1396 (1997).

    CAS  Google Scholar 

  81. Chen, H.H.C. et al. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C-60 in rats. Toxicol. Pathol. 26, 143–151 (1998).

    CAS  PubMed  Google Scholar 

  82. Warheit, D.B. et al. Comparative pulmonary toxicity assessment of single walled carbon nanotubes in rats. Toxicol. Sci., in the press (2003).

  83. Lam, C. The pulmonary toxicology of single-walled carbon nanotubes. Toxicol. Sci., in the press (2003).

  84. Carter, L.C., Carter, J.M., Nickerson, P.A., Wright, J.R. & Baier, R.E. Particle-induced phagocytic cell responses are material dependent: Foreign body giant cells vs. osteoclasts from a chick chorioallantoic membrane particle-implantation model. J. Adhesion 74, 53–77 (2000).

    CAS  Google Scholar 

  85. Dagani, R. Nanomaterials: Safe or unsafe? Chem. Eng. News 81, 30–33 (2003).

    Google Scholar 

  86. Cusan, C. et al. A new multi-charged C-60 derivative: synthesis and biological properties. Eur. J. Org. Chem. 17, 2928–2934 (2002).

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the useful editing and input from Kristen Kulinowski, Dave Warheit, John Bucher and Kevin Ausman and to thank students John Fortner, Christie Sayes, Delia Lyons, Xuekun Chen and Cafer Tevuyz, who provided experimental data for the discussion and figures. Mark Wiesner, Joe Hughes, Mason Tomson and Jennifer West are collaborators on ongoing experiments that informed this work. Finally, the author would like to thank the National Center for Electron Microscopy at LBL for access to their high resolution TEM facilities. This work was supported by grants from the National Science Foundation (no. EEC-0118007) and the Robert A. Welch foundation (no.C-1342).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colvin, V. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21, 1166–1170 (2003). https://doi.org/10.1038/nbt875

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing