Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid β-peptide

Abstract

The pathogenic event common to all forms of Alzheimer's disease is the abnormal accumulation of the amyloid β-peptide (Aβ). Here we provide strong evidence that intracellular cholesterol compartmentation modulates the generation of Aβ. Using genetic, biochemical and metabolic approaches, we found that cholesteryl-ester levels are directly correlated with Aβ production. Acyl-coenzyme A:cholesterol acyltransferase (ACAT), the enzyme that catalyses the formation of cholesteryl esters, modulates the generation of Aβ through the tight control of the equilibrium between free cholesterol and cholesteryl esters. We also show that pharmacological inhibitors of ACAT, developed for the treatment of atherosclerosis, are potent modulators of Aβ generation, indicating their potential for use in the treatment of Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lack of ACAT activity in AC29 cells elevates FC concentration in the ER membrane.
Figure 2: Cholesterol compartmentation regulates both APP processing and Aβ generation.
Figure 3: ACAT inhibitors alter cholesterol compartmentation and decrease Aβ generation in wild-type CHO cells.
Figure 4: The ACAT inhibitor CP113,818 normalizes CE and Aβ generation in 25RA cells.
Figure 5: Sterol deprivation normalizes both CE levels and Aβ secretion in 25RA cells.
Figure 6: The ACAT inhibitor CP113,818 regulates APP processing and Aβ generation in neuronal cell lines and primary neurons.
Figure 7: The ACAT inhibitor CP113,818 regulates the γ-secretase cleavage of APP and the steady-state levels of PS1 holoprotein and PS1 fragments.

Similar content being viewed by others

References

  1. Selkoe, D. J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, A23–A31 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. De Strooper, B. & Annaert, W. Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci. 113, 1857–1870 (2000).

    CAS  PubMed  Google Scholar 

  3. Tanzi, R. E. A genetic dichotomy model for the inheritance of Alzheimer's disease and common age-related disorders. J. Clin. Invest. 104, 1175–1179 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jarvik, G. P. et al. Interaction of apolipoprotein E genotype, total cholesterol level, and sex in prediction of Alzheimer disease in a case-control study. Neurology 45, 1092–1096 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Koudinov, A. R., Berezov, T. T. & Koudinova, N. V. Alzheimer's amyloid β and lipid metabolism: a missing link? FASEB J. 12, 1097–1099 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, S. J. et al. A detergent-insoluble membrane compartment contains Aβ in vivo. Nature Med. 4, 730–734 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Refolo, L. M., Wittenberg, I. S., Friedrich V. L Jr. & Robakis, N. K. The Alzheimer amyloid precursor is associated with the detergent-insoluble cytoskeleton. J. Neurosci. 11, 3888–3897 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parkin, E. T., Turner, A. J. & Hooper, N. M. Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochem. J. 344, 23–30 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizuno, T., Haass, C., Michikawa, M. & Yanagisawa, K. Cholesterol-dependent generation of a unique amyloid β-protein from apically missorted amyloid precursor protein in MDCK cells. Biochim. Biophys. Acta 1373, 119–130 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bodovitz, S. & Klein, W. L. L. Cholesterol modulates α-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 271, 4436–4440 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 6460–6464 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frears, E. R., Stephens, D. J., Walters, C. E., Davies, H. & Austen, B. M. The role of cholesterol in the biosynthesis of β-amyloid. Neuroreport 10, 1699–1705 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Howland, D. S. et al. Modulation of secreted β-amyloid precursor protein and amyloid β-peptide in brain by cholesterol. J. Biol. Chem. 273, 16576–16582 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Refolo, L. M. et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, M. S., Ho, Y. K. & Goldstein, J. L. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J. Biol. Chem. 255, 9344–9352 (1980).

    CAS  PubMed  Google Scholar 

  16. Chang, T. Y., Chang, C. C. & Cheng, D. Acyl-coenzyme A:cholesterol acyltransferase. Annu. Rev. Biochem. 66, 613–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, M. S. & Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, D. A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14, 111–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Incardona, J. P. & Eaton, S. Cholesterol in signal transduction. Curr. Opin. Cell Biol. 12, 193–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Blanchette-Mackie, E. J. Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim. Biophys. Acta 1486, 171–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Chang, T. Y. et al. Chinese hamster ovary cell mutants affecting cholesterol metabolism. Curr. Opin. Lipidol. 8, 65–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Reinhart, M. P. Intracellular sterol trafficking. Experientia 46, 599–611 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Ross, S. L. et al. Amyloid precursor protein processing in sterol regulatory element- binding protein site 2 protease-deficient Chinese hamster ovary cells. J. Biol. Chem. 273, 15309–15312 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Tomita, T., Chang, T. Y., Kodama, T. & Iwatsubo, T. βAPP γ-secretase and SREBP site 2 protease are two different enzymes. Neuroreport 9, 911–913 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Chang, C. C. et al. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J. Biol. Chem. 275, 28083–28092 (2000).

    CAS  PubMed  Google Scholar 

  27. Irie, T. et al. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharmacobiodyn. 5, 741–744 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Hansen, G. H., Niels-Christiansen, L. L., Thorsen, E., Immerdal, L. & Danielsen, E. M. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking. J. Biol. Chem. 275, 5136–5142 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Rogers, M. J. Statins: lower lipids and better bones? Nature Med. 6, 21–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, I. K., Lin-Shiau, S. Y. & Lin, J. K. Induction of apoptosis by lovastatin through activation of caspase-3 and DNase II in leukaemia HL-60 cells. Pharmacol. Toxicol. 86, 83–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Simons, M. Molecular multitasking: statins lead to more arteries, less plaque. Nature Med. 6, 965–966 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Yu, G. et al. Nicastrin modulates presenilin-mediated Notch/Glp-1 signal transduction and βAPP processing. Nature 407, 48–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Chan, Y -M & Jan, Y. N. Presenilins, processing of β-amyloid precursor protein, and Notch signaling. Neuron 23, 201–204 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Brasaemle, D. L., Barber, T., Kimmel, A. R. & Londos, C. Post-translational regulation of perilipin expression. Stabilization by stored intracellular neutral lipids. J. Biol. Chem. 272, 9378–9387 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Dixon, J. L. & Ginsberg, H. N. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J. Lipid Res. 34, 167–179 (1993).

    CAS  PubMed  Google Scholar 

  36. Johnson, W. J., Phillips, M. C. & Rothblat, G. H. in Subcellular Biochemistry (ed. Bittman, R.) 235–276 (Plenum, New York, 1997).

    Google Scholar 

  37. Oelkers, P., Behari, A., Cromley, D., Billheimer, J. T. & Sturley, S. L. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J. Biol. Chem. 273, 26765–26771 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Chang, C. C., Huh, H. Y., Cadigan, K. M. & Chang, T. Y. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J. Biol. Chem. 268, 20747–20755 (1993).

    CAS  PubMed  Google Scholar 

  39. Meiner, V. L. et al. Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc. Natl Acad. Sci. USA 93, 14041–14046 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cases, S. et al. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization. J. Biol. Chem. 273, 26755–26764 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Anderson, R. A. et al. Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J. Biol. Chem. 273, 26747–26754 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Accad, M. et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J. Clin. Invest. 105, 711–719 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krause, B. R. et al. In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT. J. Lipid Res. 34, 279–294 (1993).

    CAS  PubMed  Google Scholar 

  44. Sugiyama, Y. et al. TMP-153, a novel ACAT inhibitor, inhibits cholesterol absorption and lowers plasma cholesterol in rats and hamsters. Atherosclerosis 113, 71–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Purchase, T. S. et al. Inhibitors of acyl-CoA:cholesterol acyltransferase: novel trisubstituted ureas as hypocholesterolemic agents. Biorg. Med. Chem. 5, 739–747 (1997).

    Article  CAS  Google Scholar 

  46. Murakami, S. et al. ACAT inhibitor HL-004 accelerates the regression of hypercholesterolemia in stroke-prone spontaneously hypertensive rats (SHRSP): stimulation of bile acid production by HL-004. Atherosclerosis 133, 97–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Harris, W. S. et al. Effects of the ACAT inhibitor CL277,082 on cholesterol metabolism in humans. Clin. Pharmacol. Ther. 48, 189–194 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Natory, K., Okazaki, Y., Nakajima, T., Hirohashi, T. & Aono, S. Mechanism of the inhibition of cholesterol absorption by DL-melinamide: inhibition of cholesterol esterification. Jpn J. Pharmacol. 42, 517–523 (1986).

    Article  Google Scholar 

  49. Blaumueller, C. M., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Puglielli, L., Rigotti, A., Greco, A. V., Santos, M. J. & Nervi, F. Sterol carrier protein-2 is involved in cholesterol transfer from the endoplasmic reticulum to the plasma membrane in human fibroblasts. J. Biol. Chem. 270, 18723–18726 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. C. Y. Chang and J. C. Cruz (Dartmouth Medical School, Hanover, New Hampshire) for the gift of cholesterol-mutant cells and competitive inhibitors of ACAT; A. J. Saunders for the CHO cells stably expressing BACE; and K. M. Lentini for her technical support. This work was supported by the American Health Assistance Foundation and the Neurosciences Education and Research Foundation (D.M.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora M. Kovacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puglielli, L., Konopka, G., Pack-Chung, E. et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid β-peptide. Nat Cell Biol 3, 905–912 (2001). https://doi.org/10.1038/ncb1001-905

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing