Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prediction and validation of the distinct dynamics of transient and sustained ERK activation

Abstract

To elucidate the hidden dynamics of extracellular-signal-regulated kinase (ERK) signalling networks, we developed a simulation model of ERK signalling networks by constraining in silico dynamics based on in vivo dynamics in PC12 cells. We predicted and validated that transient ERK activation depends on rapid increases of epidermal growth factor and nerve growth factor (NGF) but not on their final concentrations, whereas sustained ERK activation depends on the final concentration of NGF but not on the temporal rate of increase. These ERK dynamics depend on Ras and Rap1 dynamics, the inactivation processes of which are growth-factor-dependent and -independent, respectively. Therefore, the Ras and Rap1 systems capture the temporal rate and concentration of growth factors, and encode these distinct physical properties into transient and sustained ERK activation, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of EGF- and NGF-dependent ERK signalling networks.
Figure 2: In vivo and in silico dynamics of ERK signalling networks.
Figure 3: Distinct dynamics of transient and sustained ERK activation.
Figure 4: In silico and in vivo ERK activation in response to stepwise increases of EGF and to stepwise decreases of NGF.
Figure 5: Distinct dynamics of EGF- and NGF-dependent Ras and Rap1 activation.
Figure 6: Characteristics of Ras and Rap1 activation in the simple Ras and Rap1 models.
Figure 7: Transient Ras activation, and Ras, Rap1 and ERK activation at steady state.
Figure 8: The distinct temporal dynamics of transient and sustained ERK activation via Ras and Rap1 activation.

Similar content being viewed by others

References

  1. Vaudry, D., Stork, P.J., Lazarovici, P. & Eiden, L.E. Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 1648–1649 (2002).

    Article  CAS  Google Scholar 

  2. Gotoh, Y. et al. Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur. J. Biochem. 193, 661–669 (1990).

    Article  CAS  Google Scholar 

  3. Qiu, M.S. & Green, S.H. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9, 705–717 (1992).

    Article  CAS  Google Scholar 

  4. Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351–355 (1992).

    Article  CAS  Google Scholar 

  5. Egan, S.E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 (1993).

    Article  CAS  Google Scholar 

  6. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T. & Bowtell, D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363, 83–85 (1993).

    Article  CAS  Google Scholar 

  7. Li, N. et al. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363, 85–88 (1993).

    Article  CAS  Google Scholar 

  8. Gale, N.W., Kaplan, S., Lowenstein, E.J., Schlessinger, J. & Bar-Sagi, D. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363, 88–92 (1993).

    Article  CAS  Google Scholar 

  9. Davis, R.J. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553–14556 (1993).

    CAS  PubMed  Google Scholar 

  10. Di Fiore, P.P. & Gill, G.N. Endocytosis and mitogenic signaling. Curr. Opin. Cell. Biol. 11, 483–488 (1999).

    Article  CAS  Google Scholar 

  11. Waterman, H. & Yarden, Y. Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett. 490, 142–152 (2001).

    Article  CAS  Google Scholar 

  12. Soler, C., Beguinot, L., Sorkin, A. & Carpenter, G. Tyrosine phosphorylation of ras GTPase-activating protein does not require association with the epidermal growth factor receptor. J. Biol. Chem. 268, 22010–22019 (1993).

    CAS  PubMed  Google Scholar 

  13. Jones, N. & Dumont, D.J. Recruitment of Dok-R to the EGF receptor through its PTB domain is required for attenuation of Erk MAP kinase activation. Curr. Biol. 9, 1057–1060 (1999).

    Article  CAS  Google Scholar 

  14. Waters, S.B. et al. Desensitization of Ras activation by a feedback disassociation of the SOS-Grb2 complex. J. Biol. Chem. 270, 20883–20886 (1995).

    Article  CAS  Google Scholar 

  15. Dong, C., Waters, S.B., Holt, K. & Pessin, J.E. SOS phosphorylation and disassociation of the Grb2–SOS complex by the ERK and JNK signaling pathways. J. Biol. Chem. 271, 6328–6332 (1996).

    Article  Google Scholar 

  16. Marshall, C.J. Signal transduction. Taking the Rap. Nature 392, 553–554 (1998).

    Article  CAS  Google Scholar 

  17. York, R.D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–666 (1998).

    Article  CAS  Google Scholar 

  18. Kao, S., Jaiswal, R.K., Kolch, W. & Landreth, G.E. Identification of the mechanisms regulating the differential activation of the MAPK cascade by epidermal growth factor and nerve growth factor in PC12 cells. J. Biol. Chem. 276, 18169–18177 (2001).

    Article  CAS  Google Scholar 

  19. Wu, C., Lai, C.F. & Mobley, W.C. Nerve growth factor activates persistent Rap1 signaling in endosomes. J. Neurosci. 21, 5406–5416 (2001).

    Article  CAS  Google Scholar 

  20. Chang, J.H., Mellon, E., Schanen, N.C. & Twiss, J.L. Persistent TrkA activity is necessary to maintain transcription in neuronally differentiated PC12 cells. J. Biol. Chem. 278, 42877–42885 (2003).

    Article  CAS  Google Scholar 

  21. Ohtsuka, T., Shimizu, K., Yamamori, B., Kuroda, S. & Takai, Y. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J. Biol. Chem. 271, 1258–1261 (1996).

    Article  CAS  Google Scholar 

  22. Vossler, M.R. et al. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89, 73–82 (1997).

    Article  CAS  Google Scholar 

  23. Bhalla, U.S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  CAS  Google Scholar 

  24. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol. 20, 370–375 (2002).

    Article  Google Scholar 

  25. Brightman, F.A. & Fell, D.A. Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett. 482, 169–174 (2000).

    Article  CAS  Google Scholar 

  26. Shvartsman, S.Y. et al. Autocrine loops with positive feedback enable context-dependent cell signaling. Am. J. Physiol. Cell. Physiol. 282, C545–C559 (2002).

    Article  CAS  Google Scholar 

  27. Bhalla, U.S., Ram, P.T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).

    Article  CAS  Google Scholar 

  28. Hatakeyama, M. et al. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 373, 451–463 (2003).

    Article  CAS  Google Scholar 

  29. Yamada, S., Taketomi, T. & Yoshimura, A. Model analysis of difference between EGF pathway and FGF pathway. Biochem. Biophys. Res. Commun. 314, 1113–1120 (2004).

    Article  CAS  Google Scholar 

  30. Kholodenko, B.N., Demin, O.V., Moehren, G. & Hoek, J.B. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181 (1999).

    Article  CAS  Google Scholar 

  31. Downward, J. The GRB2/Sem-5 adaptor protein. FEBS Lett. 338, 113–117 (1994).

    Article  CAS  Google Scholar 

  32. Langlois, W.J., Sasaoka, T., Saltiel, A.R. & Olefsky, J.M. Negative feedback regulation and desensitization of insulin- and epidermal growth factor-stimulated p21ras activation. J. Biol. Chem. 270, 25320–25323 (1995).

    Article  CAS  Google Scholar 

  33. Holt, K.H. et al. Epidermal growth factor receptor targeting prevents uncoupling of the Grb2-SOS complex. J. Biol. Chem. 271, 8300–8306 (1996).

    Article  CAS  Google Scholar 

  34. Nishida, E. & Gotoh, Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131 (1993).

    Article  CAS  Google Scholar 

  35. Bourne, H.R., Sanders, D.A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).

    Article  CAS  Google Scholar 

  36. Choi, D.Y., Toledo-Aral, J.J., Segal, R. & Halegoua, S. Sustained signaling by phospholipase C-gamma mediates nerve growth factor-triggered gene expression. Mol. Cell. Biol. 21, 2695–2705 (2001).

    Article  CAS  Google Scholar 

  37. Longva, K.E. et al. Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J. Cell Biol. 156, 843–854 (2002).

    Article  CAS  Google Scholar 

  38. Moghal, N. & Sternberg, P.W. Multiple positive and negative regulators of signaling by the EGF-receptor. Curr. Opin. Cell Biol. 11, 190–196 (1999).

    Article  CAS  Google Scholar 

  39. Arevalo, J.C., Yano, H., Teng, K.K. & Chao, M.V. A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein. EMBO J. 23, 2358–2368 (2004).

    Article  CAS  Google Scholar 

  40. de Rooij, J. & Bos, J.L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14, 623–625 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kaibuchi, Y. Gotoh, M. Kawato and M. Arita for critically reading this manuscript, and R. Kettunen and R. Kunihiro for their technical assistance. This work was supported in part by a grant in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by a grant in-aid from Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Kuroda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information S1

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 726 kb)

Supplementary Information S2

Supplementary Table S1 (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasagawa, S., Ozaki, Yi., Fujita, K. et al. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7, 365–373 (2005). https://doi.org/10.1038/ncb1233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing