Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The past, present and potential for microfluidic reactor technology in chemical synthesis

Abstract

The past two decades have seen far-reaching progress in the development of microfluidic systems for use in the chemical and biological sciences. Here we assess the utility of microfluidic reactor technology as a tool in chemical synthesis in both academic research and industrial applications. We highlight the successes and failures of past research in the field and provide a catalogue of chemistries performed in a microfluidic reactor. We then assess the current roadblocks hindering the widespread use of microfluidic reactors from the perspectives of both synthetic chemistry and industrial application. Finally, we set out seven challenges that we hope will inspire future research in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microfluidic reactors for industrial processes.
Figure 2: Microfluidic reactors for integrated synthesis.
Figure 3: Microfluidic reactors for reaction optimization.
Figure 4: Microfluidic reactors for reaction optimization with continuous monitoring.
Figure 5: Microfluidic reactor size considerations.
Figure 6: Microfluidic reactors for intelligent synthesis.
Figure 7: Microfluidic reactors for discovery catalyst research.

Similar content being viewed by others

References

  1. Philpot, J. S. L. The use of thin layers in electrophoretic separation. Trans. Faraday Soc. 35, 38–46 (1940).

    Article  Google Scholar 

  2. Terry, S. C. A gas chromatography system fabricated on a silicon wafer using integrated circuit technology. Stanford Electronics Laboratories Tech. Rep. 4603, 41 (1975).

    Google Scholar 

  3. Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuat. B 1, 244–248 (1990).

    Article  CAS  Google Scholar 

  4. Woolley, A. T. & Mathies, R. A. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl Acad. Sci. USA 91, 11348–11352 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Egido, E., Wong, S. Y. F. & Warrington, B. H. A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system. Lab Chip 2, 31–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Srinivasan, R. et al. Chemical performance and high temperature characterization of micromachined chemical reactors. Transducers 97, Int. Conf. Solid-State Sens. Actuators 1, 163–166 (1997).

    Article  CAS  Google Scholar 

  7. Ehrfeld, W., Golbig, K., Hessel, V., Löwe, H. & Richter, T. Characterization of mixing in micromixers by a test reaction: Single mixing units and mixer arrays. Ind. Eng. Chem. Res. 38, 1075–1082 (1999).

    Article  CAS  Google Scholar 

  8. Mitchell, M. C., Spikmans, V., Manz, A. & de Mello, A. J. Microchip-based synthesis and total analysis systems (μ-SYNTAS): Chemical microprocessing for generation and analysis of compound libraries. J. Chem. Soc. Perkin Trans. 1, 514–518 (2001).

    Article  Google Scholar 

  9. Schwalbe, T., Autze, V. & Wille, G. Chemical synthesis in microreactors. Chimia 56, 636–646 (2002).

    Article  CAS  Google Scholar 

  10. Goodell, J. R. et al. Development of an automated microfluidic reaction platform for multidimensional screening: Reaction discovery employing bicyclo[3.2.1]octanoid scaffolds. J. Org. Chem. 74, 6169–6180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zaborenko, N., Bedore, M. W., Jamison, T. F. & Jensen, K. F. Kinetic and scale-up investigations of epoxide aminolysis in microreactors at high temperatures and pressures. Org. Process Res. Dev. 15, 131–139 (2010).

    Article  CAS  Google Scholar 

  12. Shimoyama, A., Fujimoto, Y. & Fukase, K. Stereoselective glycosylation of 3-deoxy-D-manno-2-octulosonic acid with batch and microfluidic methods. Synlett 2011, 2359–2362 (2011).

    Article  CAS  Google Scholar 

  13. Asai, T. et al. Switching reaction pathways of benzo[b]thiophen-3-yllithium and benzo[b]furan-3-yllithium based on high-resolution residence-time and temperature control in a flow microreactor. Chem. Lett. 40, 393–395 (2011).

    Article  CAS  Google Scholar 

  14. Pieber, B. & Kappe, C. O. Direct aerobic oxidation of 2-benzylpyridines in a gas–liquid continuous-flow regime using propylene carbonate as a solvent. Green Chem. 15, 320–324 (2013).

    Article  CAS  Google Scholar 

  15. Wiles, C., Watts, P. & Haswell, S. J. Clean and selective oxidation of aromatic alcohols using silica-supported Jones' reagent in a pressure-driven flow reactor. Tetrahedron Lett. 47, 5261–5264 (2006).

    Article  CAS  Google Scholar 

  16. Haswell, S. J., O'Sullivan, B. & Styring, P. Kumada–Corriu reactions in a pressure-driven microflow reactor. Lab Chip 1, 164–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Illg, T., Hessel, V., Lob, P. & Schouten, J. C. Continuous synthesis of tert-butyl peroxypivalate using a single-channel microreactor equipped with orifices as emulsification units. ChemSusChem 4, 392–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Hartman, R. L., McMullen, J. P. & Jensen, K. F. Deciding whether to go with the flow: Evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50, 7502–7519 (2011).

    Article  CAS  Google Scholar 

  19. Saias, L., Autebert, J., Malaquin, L. & Viovy, J-L. Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems. Lab Chip 11, 822–832 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Ozdemir, M. R., Kosar, A., Demir, O., Ozenel, C. & Bahcivan, O. Thermal-hydraulic, exergy and exergy-economic analysis of micro heat sinks at high flow rates. Proc. 10th ASME Bienn. Conf. Engineering Systems Design and Analysis 703–710 (ASME, 2010).

    Google Scholar 

  21. Lee, C-C. et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310, 1793–1796 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Pelleter, J. & Renaud, F. Facile, fast and safe process development of nitration and bromination reactions using continuous flow reactors. Org. Process Res. Dev. 13, 698–705 (2009).

    Article  CAS  Google Scholar 

  23. Norton, D. G., Wetzel, E. D. & Vlachos, D. G. Fabrication of single-channel catalytic microburners: Effect of confinement on the oxidation of hydrogen/air mixtures. Ind. Eng. Chem. Res. 43, 4833–4840 (2004).

    Article  CAS  Google Scholar 

  24. Geyer, K., Codee, J. D. & Seeberger, P. H. Microreactors as tools for synthetic chemists—the chemists' round-bottomed flask of the 21st century? Chemistry 12, 8434–8442 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Haswell, S. J. & Watts, P. Green chemistry: Synthesis in micro reactors. Green Chem. 5, 240–249 (2003).

    Article  CAS  Google Scholar 

  26. Amador, C., Gavriilidis, A. & Angeli, P. Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage. Chem. Eng. J. 101, 379–390 (2004).

    Article  CAS  Google Scholar 

  27. Fletcher, P. & Haswell, S. Downsizing synthesis. Chem. Br. 35, 38–41 (1999).

    CAS  Google Scholar 

  28. Steel, C. J., O'Brien, A. T., Luthra, S. K. & Brady, F. Automated PET radiosyntheses using microfluidic devices. J. Labelled Compd Radiopharm. 50, 308–311 (2007).

    Article  CAS  Google Scholar 

  29. McMullen, J. P., Stone, M. T., Buchwald, S. L. & Jensen, K. F. An integrated microreactor system for self-optimization of a Heck reaction: From micro- to mesoscale flow systems. Angew. Chem. Int. Ed. 122, 7230–7234 (2010).

    Article  Google Scholar 

  30. Kockmann, N., Gottsponer, M. & Roberge, D. M. Scale-up concept of single-channel microreactors from process development to industrial production. Chem. Eng. J. 167, 718–726 (2011).

    Article  CAS  Google Scholar 

  31. Gutmann, B., Roduit, J-P., Roberge, D. & Kappe, C. O. A two-step continuous-flow synthesis of N-(2-aminoethyl)acylamides through ring-opening/hydrogenation of oxazolines. Chem. Eur. J. 17, 13146–13150 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Razzaq, T. & Kappe, C. O. Continuous flow organic synthesis under high-temperature/pressure conditions. Chem. Asian J. 5, 1274–1289 (2010).

    CAS  PubMed  Google Scholar 

  33. Nobis, M. & Roberge, D. Mastering ozonolysis: Production from laboratory to ton scale in continuous flow. Chim. Oggi Chem. Today 29, 56–58 (2011).

    CAS  Google Scholar 

  34. Kockmann, N. & Roberge, D. M. Scale-up concept for modular microstructured reactors based on mixing, heat transfer, and reactor safety. Chem. Eng. Process. 50, 1017–1026 (2011).

    Article  CAS  Google Scholar 

  35. Pennemann, H., Watts, P., Haswell, S. J., Hessel, V. & Löwe, H. Benchmarking of microreactor applications. Org. Process Res. Dev. 8, 422–439 (2004).

    Article  CAS  Google Scholar 

  36. Hessel, V., Knobloch, C. & Löwe, H. Review on patents in microreactor and micro process engineering. Recent Pat. Chem. Eng. 1, 1–16 (2008).

    Article  CAS  Google Scholar 

  37. Dencic, I. et al. Recent changes in patenting behavior in microprocess technology and its possible use for gas–liquid reactions and the oxidation of glucose. ChemSusChem 5, 232–245 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Kockmann, N. & Gottsponer, M. Heat transfer limitations of gas-liquid exothermic reactions in microchannels. ASME 2010 , 3rd Joint US–Eur. Fluids Eng. Summer Meet., 8th Int. Conf. Nanochannels, Microchannels, Minichannels 193–199 (2010).

  39. Ducry, L. & Roberge, D. M. Controlled autocatalytic nitration of phenol in a microreactor. Angew. Chem. Int. Ed. 44, 7972–7975 (2005).

    Article  CAS  Google Scholar 

  40. Barthe, P. et al. Continuous multi-injection reactor for multipurpose production – part I. Chem. Eng. Technol. 31, 1146–1154 (2008).

    Article  CAS  Google Scholar 

  41. Kockmann, N. & Roberge, D. M. Transitional flow and related transport phenomena in curved microchannels. Heat Transfer Eng. 32, 595–608 (2011).

    Article  CAS  Google Scholar 

  42. Holvey, C. P., Roberge, D. M., Gottsponer, M., Kockmann, N. & Macchi, A. Pressure drop and mixing in single phase microreactors: Simplified designs of micromixers. Chem. Eng. Process. 50, 1069–1075 (2011).

    Article  CAS  Google Scholar 

  43. Kashid, M. N. & Kiwi-Minsker, L. Microstructured reactors for multiphase reactions: State of the art. Ind. Eng. Chem. Res. 48, 6465–6485 (2009).

    Article  CAS  Google Scholar 

  44. Roberge, D. M. et al. Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: Is the revolution underway? Org. Process Res. Dev. 12, 905–910 (2008).

    Article  CAS  Google Scholar 

  45. Hessel, V., Renken, A., Schouten, J. C. & Yoshida, J. Micro Process Engineering: A Comprehensive Handbook (Wiley-VCH, 2009).

    Book  Google Scholar 

  46. Tonkovich, A. et al. Microchannel technology scale-up to commercial capacity. Chem. Eng. Res. Des. 83, 634–639 (2005).

    Article  CAS  Google Scholar 

  47. Roberge, D. Lonza—hazardous flow chemistry for streamlined large scale synthesis. Green Process. Synth. 1, 129–130 (2012).

    CAS  Google Scholar 

  48. Yoshida, J. Flash Chemistry: Fast Organic Synthesis in Microsystems (Wiley, 2008).

    Book  Google Scholar 

  49. Kockmann, N., Gottsponer, M., Zimmermann, B. & Roberge, D. M. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production. Chem. Eur. J. 14, 7470–7477 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Delville, M. M. E. et al. Continuous flow azide formation: Optimization and scale-up. Chem. Eng. J. 167, 556–559 (2011).

    Article  CAS  Google Scholar 

  51. Alfa Laval; www.alfalaval.com/campaigns/labplatereactor/Pages/default.aspx (accessed March 2013).

  52. Corning; www.corning.com/products_services/new_business_development/reactors/index.aspx (accessed March 2013).

  53. Microinnova; www.microinnova.com/ (accessed March 2013).

  54. Chemtrix; www.chemtrix.com (accessed March 2013).

  55. Futurechemistry; www.futurechemistry.com (accessed March 2013).

  56. Kralisch, D. & Kreisel, G. Assessment of the ecological potential of microreaction technology. Chem. Eng. Sci. 62, 1094–1100 (2007).

    Article  CAS  Google Scholar 

  57. Roberge, D. M. et al. Development of an industrial multi-injection microreactor for fast and exothermic reactions. Part II. Chem. Eng. Technol. 31, 1155–1161 (2008).

    Article  CAS  Google Scholar 

  58. Schwalbe, T., Kursawe, A. & Sommer, J. Application report on operating cellular process chemistry plants in fine chemical and contract manufacturing industries. Chem. Eng. Technol. 28, 408–419 (2005).

    Article  CAS  Google Scholar 

  59. Chambers, R. D. & Spink, R. C. H. Microreactors for elemental fluorine. Chem. Commun., 883–884 (1999).

  60. Chambers, R. D., Holling, D., Spink, R. C. H. & Sandford, G. Elemental fluorine. Part 13: Gas–liquid thin film microreactors for selective direct fluorination. Lab Chip 1, 132–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Rensch, C. et al. Microfluidic reactor geometries for radiolysis reduction in radiopharmaceuticals. Appl. Radiat. Isot. 70, 1691–1697 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Watts, P., Pascali, G. & Salvadori, P. Positron emission tomography radiosynthesis in microreactors. J. Flow Chem. 2, 37–42 (2012).

    Article  CAS  Google Scholar 

  63. Geyer, K., Gustafsson, T. & Seeberger, P. H. Developing continuous-flow microreactors as tools for synthetic chemists. Synlett 2382–2391 (2009).

  64. Illg, T., Löb, P. & Hessel, V. Flow chemistry using milli- and microstructured reactors: From conventional to novel process windows. Bioorg. Med. Chem. 18, 3707–3719 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Brivio, M., Verboom, W. & Reinhoudt, D. N. Miniaturized continuous flow reaction vessels: Influence on chemical reactions. Lab Chip 6, 329–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Koch, K. et al. Optimizing the deprotection of the amine protecting p-methoxyphenyl group in an automated microreactor platform. Org. Process Res. Dev. 13, 1003–1006 (2009).

    Article  CAS  Google Scholar 

  67. McMullen, J. P. & Jensen, K. F. Integrated microreactors for reaction automation: New approaches to reaction development. Annu. Rev. Anal. Chem. 3, 19–42 (2010).

    Article  CAS  Google Scholar 

  68. Carroll, N. J. et al. Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir 24, 658–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Doku, G. N., Haswell, S. J., McCreedy, T. & Greenway, G. M. Electric field-induced mobilisation of multiphase solution systems based on the nitration of benzene in a micro reactor. Analyst 126, 14–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Watts, P., Wiles, C., Haswell, S. J., Pombo-Villar, E. & Styring, P. The synthesis of peptides using micro reactors. Chem. Commun. 990–991 (2001).

  71. DeWitt, S. H. Microreactors for chemical synthesis. Curr. Opin. Chem. Biol. 3, 350–356 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Hou, F. H. et al. Development of a microplate reader compatible microfluidic chip for ELISA. Biomed. Microdevices 14, 729–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Conant, C. G. et al. Well plate microfluidic system for investigation of dynamic platelet behavior under variable shear loads. Biotechnol. Bioeng. 108, 2978–2987 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Skelton, V. et al. The preparation of a series of nitrostilbene ester compounds using micro reactor technology. Analyst 126, 7–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Basheer, C., Shahitha, F., Hussain, J., Lee, H. K. & Valiyaveettil, S. Design of a capillary-microreactor for efficient Suzuki coupling reactions. Tetrahedron Lett. 45, 7297–7300 (2004).

    Article  CAS  Google Scholar 

  76. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Gomez, F. A. Microfluidics in protein chromatography. Methods Mol. Biol. 681, 137–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Jensen, K. F. Silicon-based microchemical systems: Characteristics and applications. Mater. Res. Soc. Bull. 31, 101–107 (2006).

    Article  CAS  Google Scholar 

  79. Kim, D-P. Lab-on-a-chip systems for microchemical applications. J. Anal. Sci. Technol. 2, 146–149 (2011).

    Article  CAS  Google Scholar 

  80. Snyder, D. A. et al. Modular microreaction systems for homogeneously and heterogeneously catalyzed chemical synthesis. Helv. Chim. Acta 88, 1–9 (2005).

    Article  CAS  Google Scholar 

  81. Begolo, S., Colas, G., Viovy, J-L. & Malaquin, L. New family of fluorinated polymer chips for droplet and organic solvent microfluidics. Lab Chip 11, 508–512 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable 'liquid Teflon' for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Abate, A. R., Lee, D., Do, T., Holtze, C. & Weitz, D. A. Glass coating for PDMS microfluidic channels by sol-gel methods. Lab Chip 8, 516–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Kreutz, J. E. et al. Evolution of catalysts directed by genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. J. Am. Chem. Soc. 132, 3128–3132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Elvira, K. S., Wootton, R. C. R., Reis, N. M., Mackley, M. R. & deMello, A. J. Through-wall mass transport as a modality for safe generation of singlet oxygen in continuous flows. ACS Sust. Chem. Eng. 1, 209–213 (2013).

    Article  CAS  Google Scholar 

  87. Marre, S., Roig, Y. & Aymonier, C. Supercritical microfluidics: Opportunities in flow-through chemistry and materials science. J. Supercrit. Fluids 66, 251–264 (2012).

    Article  CAS  Google Scholar 

  88. Liu, X., Ünal, B. & Jensen, K. F. Heterogeneous catalysis with continuous flow microreactors. Catal. Sci. Technol. 2, 2134–2138 (2012).

    Article  CAS  Google Scholar 

  89. Miller, P. W. et al. Rapid multiphase carbonylation reactions by using a microtube reactor: Applications in positron emission tomography 11C radiolabeling. Angew. Chem. Int. Ed. 119, 2933–2936 (2007).

    Article  Google Scholar 

  90. Kobayashi, J. et al. A microfluidic device for conducting gas–liquid–solid hydrogenation reactions. Science 304, 1305–1308 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Hartman, R. L. Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org. Process Res. Dev. 16, 870–887 (2012).

    Article  CAS  Google Scholar 

  92. Frenz, L. et al. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 47, 6817–6820 (2008).

    Article  CAS  Google Scholar 

  93. Kuhn, S., Noel, T., Gu, L., Heider, P. L. & Jensen, K. F. A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions. Lab Chip 11, 2488–2492 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Baxendale, I. R., Ley, S. V., Mansfield, A. C. & Smith, C. D. Multistep synthesis using modular flow reactors: Bestmann-Ohira reagent for the formation of alkynes and triazole. Angew. Chem. Int. Ed. 48, 4017–4021 (2009).

    Article  CAS  Google Scholar 

  95. Bessoth, F. G., deMello, A. J. & Manz, A. Microstructure for efficient continuous flow mixing. Anal. Commun. 36, 213–215 (1999).

    Article  CAS  Google Scholar 

  96. Nittis, V., Fortt, R., Legge, C. H. & de Mello, A. A high-pressure interconnect for chemical microsystem applications. Lab Chip 1, 148–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Chabert, M., Dorfman, K. D., de Cremoux, P., Roeraade, J. & Viovy, J-L. Automated microdroplet platform for sample manipulation and polymerase chain reaction. Anal. Chem. 78, 7722–7728 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Kopp, M. U., de Mello, A. J. & Manz, A. Chemical amplification: Continuous-flow PCR on a chip. Science 280, 1046–1048 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Polyzos, A., O'Brien, M., Petersen, T. P., Baxendale, I. R. & Ley, S. V. The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. Angew. Chem. Int. Ed. 50, 1190–1193 (2011).

    Article  CAS  Google Scholar 

  100. Hartman, R. L. & Jensen, K. F. Microchemical systems for continuous-flow synthesis. Lab Chip 9, 2495–2507 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Hartman, R. L., Sahoo, H. R., Yen, B. C. & Jensen, K. F. Distillation in microchemical systems using capillary forces and segmented flow. Lab Chip 9, 1843–1849 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Wootton, R. C. R. & De Mello, A. J. Continuous laminar evaporation: Micron-scale distillation. Chem. Commun., 266–267 (2004).

  103. Lee, J. H. et al. Microfluidic centrifuge of nano-particles using rotating flow in a microchamber. Sens. Actuators B 132, 525–530 (2008).

    Article  CAS  Google Scholar 

  104. Kang, J. Y., Cho, H. S., Kwak, S. M., Yoon, D. S. & Kim, T. S. Novel particle separation using spiral channel and centrifugal force for plasma preparation from whole blood. Micro Total Anal. Syst. 2004, Proc. 8th μTAS 2004 Symp. 1, 614–616 (2004).

    Google Scholar 

  105. Kralj, J. G., Sahoo, H. R. & Jensen, K. F. Integrated continuous microfluidic liquid–liquid extraction. Lab Chip 7, 256–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B. & Graves, S. M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 18, R635–R666 (2006).

    Article  CAS  Google Scholar 

  107. Mitchell, M. C., Spikmans, V. & deMello, A. J. Microchip-based synthesis and analysis: Control of multicomponent reaction products and intermediates. Analyst 126, 24–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Krishnadasan, S., Brown, R. J. C., deMello, A. J. & deMello, J. C. Intelligent routes to the controlled synthesis of nanoparticles. Lab Chip 7, 1434–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Garcia-Egido, E., Spikmans, V., Wong, S. Y. F. & Warrington, B. H. Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip 3, 73–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Hilbert, D. Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902).

    Article  Google Scholar 

  111. Wootton, R. C. R. & deMello, A. J. A one-step protocol for the chemical derivatisation of glass microfluidic devices. Lab Chip 6, 471–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Ratner, D. M. et al. Microreactor-based reaction optimization in organic chemistry - glycosylation as a challenge. Chem. Commun. 578–580 (2005).

  113. Moore, J. S. & Jensen, K. F. Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis. Org. Process Res. Dev. 16, 1409–1415 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Lignos and A. Rane for the literature research shown in Supplementary Tables S1 and S2.

Author information

Authors and Affiliations

Authors

Contributions

K.S.E., R.C.R.W. and A.J.dM developed the concept, discussed the results and implications, and edited and commented on the manuscript at all stages; K.S.E., R.C.R.W, X.C.S and A.J.dM researched and wrote the manuscript and K.S.E. edited the Supplementary Information.

Corresponding authors

Correspondence to Katherine S. Elvira or Andrew J. deMello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1960 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elvira, K., i Solvas, X., Wootton, R. et al. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nature Chem 5, 905–915 (2013). https://doi.org/10.1038/nchem.1753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing