Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Beyond Hofmeister

Research efforts related to the Hofmeister series of salt ions have waxed and waned during its long and storied history. The past few decades have, however, witnessed a renaissance in its study, and the importance of the related solvation science is becoming ever more apparent.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A commemorative plaque at the Medical Faculty of the Charles University in Prague reading (in Czech and German): “Professor Franz Hofmeister (1850–1922), who carried out research in this building, predicted that amino acids in proteins are connected by a peptide bond and, in 1888, derived the lyotropic (Hofmeister) series of ions.”
Figure 2: Distribution of sodium (green) and potassium (cyan) cations around aqueous HIV-protease displayed with a colour-coded electrostatic surface (blue, negative; red, positive).

References

  1. Hofmeister, F. Arch. Exp. Pathol. Pharmakol. (Leipzig) 24, 247–260 (1888).

    Google Scholar 

  2. Hofmeister, F. Arch. Exp. Pathol. Pharmakol. (Leipzig) 25, 1–30 (1888).

    Google Scholar 

  3. Cox, W. M. & Wolfenden, J. H. Proc. R. Soc. London A 145, 475–488 (1934).

    CAS  Google Scholar 

  4. Gurney, R. W. Ionic Processes in Solution (McGraw-Hill, 1953).

    Google Scholar 

  5. Marcus, Y. Chem. Rev. 109, 1346–1370 (2009).

    CAS  PubMed  Google Scholar 

  6. Hribar, B., Southall, N. T., Vlachy, V. & Dill, K. A. J. Am. Chem. Soc. 124, 12302–12311 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas, A. S. & Elcock, A. H. J. Am. Chem. Soc. 129, 14887–14898 (2007).

    CAS  PubMed  Google Scholar 

  8. Omta, A. W., Kropman, M. F., Woutersen, S. & Bakker, H. J. Science 301, 347–349 (2003).

    CAS  PubMed  Google Scholar 

  9. Funkner, S. et al. J. Am. Chem. Soc. 134, 1030–1035 (2012).

    CAS  PubMed  Google Scholar 

  10. Traube, J. J. Phys. Chem. 14, 452–470 (1910).

    CAS  Google Scholar 

  11. Rieskautt, M. M. & Ducruix, A. F. J. Biol. Chem. 264, 745–748 (1989).

    CAS  Google Scholar 

  12. Zhang, Y. J. & Cremer, P. S. Proc. Natl Acad. Sci. USA 106, 15249–15253 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bello, J. & Bello, H. R. Nature 190, 440–441 (1961).

    CAS  Google Scholar 

  14. Bello, J. & Bello, H. R. Nature 194, 681–682 (1962).

    CAS  PubMed  Google Scholar 

  15. Robinson, D. R. & Jencks, W. P. J. Am. Chem. Soc. 87, 2470–2479 (1965).

    CAS  PubMed  Google Scholar 

  16. Nandi, P. K. & Robinson, D. R. J. Am. Chem. Soc. 94, 1299–1308 (1972).

    CAS  PubMed  Google Scholar 

  17. Arakawa, T. & Timasheff, S. N. Biochemistry 21, 6545–6552 (1982).

    CAS  PubMed  Google Scholar 

  18. Von Hippel, P., Peticola, V., Schack, L. & Karlson, L. Biochemistry 12, 1256–1264 (1973).

    CAS  PubMed  Google Scholar 

  19. Paterova, J. et al. J. Phys. Chem. B 117, 8150–8158 (2013).

    CAS  PubMed  Google Scholar 

  20. Cacace, M. G., Landau, E. M. & Ramsden, J. J. Q. Rev. Biophys. 30, 241–277 (1997).

    CAS  PubMed  Google Scholar 

  21. Collins, K. D. & Washabaugh, M. W. Q. Rev. Biophys. 18, 323–422 (1985).

    CAS  PubMed  Google Scholar 

  22. Kunz, W., Lo Nostro, P. & Ninham, B. W. Curr. Opin. Colloid Interf. Sci. 9, 1–18 (2004).

    CAS  Google Scholar 

  23. Kunz, W., Henle, J. & Ninham, B. W. Curr. Opin. Colloid Interf. Sci. 9, 19–37 (2004).

    CAS  Google Scholar 

  24. Wilson, E. K. Chem. Eng. News 85, 47–49 (26 November 2007).

    Google Scholar 

  25. Lo Nostro, P. & Ninham, B. W. Chem. Rev. 112, 2286–2322 (2012).

    CAS  PubMed  Google Scholar 

  26. Bostrom, M., Williams. D. R. M. & Ninham, B. W. Curr. Opin. Colloid Interf. Sci. 9, 48–52 (2004).

    CAS  Google Scholar 

  27. Wilson, E. K. Chem. Eng. News 90, 42–43 (16 July 2012).

    Google Scholar 

  28. Tobias, D. J. & Hemminger, J. C. Science 319, 1197–1198 (2008).

    CAS  PubMed  Google Scholar 

  29. Nandi, P. K. & Robinson, D. R. J. Am. Chem. Soc. 94, 1308–1315 (1972).

    CAS  PubMed  Google Scholar 

  30. Baldwin, R. L. Biophys. J. 71, 2056–2063 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Street, T. O., Bolen, D. W. & Rose, G. D. Proc. Natl Acad. Sci. USA 103, 13997–14002 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pegram, L. M. & Record, M. T. J. Phys. Chem. B 112, 9428–9436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalcher, I., Horinek, D., Netz, R. R. & Dzubiella, J. J. Phys. Condens. Matter 21, 424108 (2009).

    CAS  PubMed  Google Scholar 

  34. Rembert, K. B. et al. J. Am. Chem. Soc. 134, 10039–10046 (2012).

    CAS  PubMed  Google Scholar 

  35. Okur, H. I., Kherb, J. & Cremer, P. S. J. Am. Chem. Soc. 135, 5062–5067 (2013).

    CAS  PubMed  Google Scholar 

  36. Heyda, J., Vincent, J. C., Tobias, D. J., Dzubiella, J. & Jungwirth, P. J. Phys. Chem. B 114, 1213–1220 (2010).

    CAS  PubMed  Google Scholar 

  37. Algaer, E. A. & van der Vegt, N. F. A. J. Phys. Chem. B 115, 13781–13787 (2011).

    CAS  PubMed  Google Scholar 

  38. Collins, K. D. Biophys. J. 72, 65–76 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Collins, K. D., Neilson, G. W. & Enderby, J. E. Biophys. Chem. 128, 95–104 (2007).

    CAS  PubMed  Google Scholar 

  40. Hess, B. & van der Vegt, N. F. A. Proc. Natl Acad. Sci. USA 106, 13296–13300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Heyda, J., Hrobarik, T. & Jungwirth, P. J. Phys. Chem. A 113, 1969–1975 (2009).

    CAS  PubMed  Google Scholar 

  42. Aziz, E. F. et al. J. Phys. Chem. B 112, 12567–12570 (2008).

    CAS  PubMed  Google Scholar 

  43. Uejio, J. S. et al. Proc. Natl Acad. Sci. USA 105, 6809–6812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vrbka, L., Vondrasek, J., Jagoda-Cwiklik, B., Vacha, R. & Jungwirth, P. Proc. Natl Acad. Sci. USA 103, 15440–15444 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Heyda, J. et al. Phys. Chem. Chem. Phys. 11, 7599–7604 (2009).

    CAS  PubMed  Google Scholar 

  46. Friedman, R. J. Phys. Chem. B 115, 9213–9223 (2011).

    CAS  PubMed  Google Scholar 

  47. Horinek, D. & Moeser, B. J. Phys. Chem. B 118, 107–114 (2014).

    PubMed  Google Scholar 

  48. Schneider, C. P, Shukla, D. & Trout, B. L. J. Phys. Chem. B 115, 7447–7458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tanford, C. Physical Chemistry of Macromolecules (Wiley, 1961).

    Google Scholar 

  50. Mason, P. E. et al. J. Phys. Chem. B 113, 3227–3234 (2009).

    CAS  PubMed  Google Scholar 

  51. Dempsey, C. E., Mason, P. E. & Jungwirth, P. J. Am. Chem. Soc. 133, 7300–7303 (2011).

    CAS  PubMed  Google Scholar 

  52. Ball, P. Faraday Discuss. 160, 405–414 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Jungwirth or Paul S. Cremer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungwirth, P., Cremer, P. Beyond Hofmeister. Nature Chem 6, 261–263 (2014). https://doi.org/10.1038/nchem.1899

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing