Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling and imaging biomimetic self-assembly

Abstract

The self-assembly of chemical entities represents a very attractive way to create a large variety of ordered functional structures and complex matter. Although much effort has been devoted to the preparation of supramolecular nanostructures based on different chemical building blocks, an understanding of the mechanisms at play and the ability to monitor assembly processes and, in turn, control them are often elusive, which precludes a deep and comprehensive control of the final structures. Here the complex supramolecular landscape of a platinum(II) compound is characterized fully and controlled successfully through a combination of supramolecular and photochemical approaches. The supramolecular assemblies comprise two kinetic assemblies and their thermodynamic counterpart. The monitoring of the different emission properties of the aggregates, used as a fingerprint for each species, allows the real-time visualization of the evolving self-assemblies. The control of multiple supramolecular pathways will help the design of complex systems in and out of their thermodynamic equilibrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the landscape of the supramolecular self-assemblies of complex 1.
Figure 2: Kinetic and thermodynamic study of the assemblies using photophysical techniques.
Figure 3: Snapshots taken from Supplementary Movies 1 and 2.
Figure 4: Supramolecular polymerization of assembly A initiated by the addition of seeds of C.

Similar content being viewed by others

References

  1. Lehn, J.-M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    CAS  PubMed  Google Scholar 

  2. Reinhoudt, D. N. & Crego-Calama, M. Synthesis beyond the molecule. Science 295, 2403–2407 (2002).

    CAS  PubMed  Google Scholar 

  3. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  PubMed  Google Scholar 

  4. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Whitesides, G. M. & Boncheva, M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl Acad. Sci. USA 99, 4769–4774 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    CAS  PubMed  Google Scholar 

  7. Lehn, J.-M. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763–4768 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lehn, J.-M. Supramolecular chemistry—scope and perspectives. Molecules, supermolecules, and molecular devices. Angew. Chem. Int. Ed. 27, 89–117 (1988).

    Google Scholar 

  9. Lehn, J.-M. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. 29, 1304–1319 (1990).

    Google Scholar 

  10. Busseron, E., Ruff, Y., Moulin, E. & Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5, 7098–7140 (2013).

    CAS  PubMed  Google Scholar 

  11. Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).

    CAS  PubMed  Google Scholar 

  12. Korevaar, P. A., Newcomb, C. J., Meijer, E. W. & Stupp, S. I. Pathway selection in peptide amphiphile assembly. J. Am. Chem. Soc. 136, 8540–8543 (2014).

    CAS  PubMed  Google Scholar 

  13. Rodríguez-Llansola, F. & Meijer, E. W. Supramolecular autoregulation. J. Am. Chem. Soc. 135, 6549–6553 (2013).

    PubMed  Google Scholar 

  14. Lohr, A., Lysetska, M. & Würthner, F. Supramolecular stereomutation in kinetic and thermodynamic self-assembly of helical merocyanine dye nanorods. Angew. Chem. Int. Ed. 44, 5071–5074 (2005).

    CAS  Google Scholar 

  15. Cui, H., Chen, Z., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    CAS  PubMed  Google Scholar 

  16. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    CAS  PubMed  Google Scholar 

  17. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nature Chem. 6, 188–195 (2014).

    CAS  Google Scholar 

  18. Powers, E. T. & Powers, D. L. Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation. Biophys. J. 94, 379–391 (2008).

    CAS  PubMed  Google Scholar 

  19. Strassert, C. A. et al. Switching on luminescence by the self-assembly of a platinum(II) complex into gelating nanofibers and electroluminescent films. Angew. Chem. Int. Ed. 50, 946–950 (2011).

    CAS  Google Scholar 

  20. Mauro, M. et al. Self-assembly of a neutral platinum(II) complex into highly emitting microcrystalline fibers through metallophilic interactions. Chem. Commun. 50, 7269–7272 (2014).

    CAS  Google Scholar 

  21. Yam, V. W.-W., Wong, K. M.-C. & Zhu, N. Solvent-induced aggregation through metal···metal/π···π interactions: large solvatochromism of luminescent organoplatinum(II) terpyridyl complexes. J. Am. Chem. Soc. 124, 6506–6507 (2002).

    CAS  PubMed  Google Scholar 

  22. Ma, B. et al. Synthetic control of Pt···Pt separation and photophysics of binuclear platinum complexes. J. Am. Chem. Soc. 127, 28–29 (2005).

    CAS  PubMed  Google Scholar 

  23. Po, C., Tam, A. Y.-Y., Wong, K. M.-C. & Yam, V. W.-W. Supramolecular self-assembly of amphiphilic anionic platinum(II) complexes: a correlation between spectroscopic and morphological properties. J. Am. Chem. Soc. 133, 12136–12143 (2011).

    CAS  PubMed  Google Scholar 

  24. Krikorian, M., Liu, S. & Swager, T. M. Columnar liquid crystallinity and mechanochromism in cationic platinum(II) complexes. J. Am. Chem. Soc. 136, 2952–2955 (2014).

    CAS  PubMed  Google Scholar 

  25. Aliprandi, A., Genovese, D., Mauro, M. & De Cola, L. Recent advances in phosphorescent Pt(II) complexes featuring metallophilic interactions: properties and applications. Chem. Lett. 44, 1152–1169 (2015).

    CAS  Google Scholar 

  26. Åkerlöf, G. & Short, O. A. The dielectric constant of dioxane–water mixtures between 0 and 80°. J. Am. Chem. Soc. 58, 1241–1243 (1936).

    Google Scholar 

  27. Hovorka, F., Schaefer, R. A. & Dreisbach, D. The system dioxane and water. J. Am. Chem. Soc. 58, 2264–2267 (1936).

    CAS  Google Scholar 

  28. Johnsson, K. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nature Chem. 5, 132–139 (2013).

    Google Scholar 

  29. Filot, I. A. W. et al. Understanding cooperativity in hydrogen-bond-induced supramolecular polymerization: a density functional theory study. J. Phys. Chem. B 114, 13667–13674 (2010).

    CAS  PubMed  Google Scholar 

  30. Korevaar, P. A., Schaefer, C., de Greef, T. F. A. & Meijer, E. W. Controlling chemical self-assembly by solvent-dependent dynamics. J. Am. Chem. Soc. 134, 13482–13491 (2012).

    CAS  PubMed  Google Scholar 

  31. ten Eikelder, H. M. M., Markvoort, A. J., de Greef, T. F. A. & Hilbers, P. A. J. An equilibrium model for chiral amplification in supramolecular polymers. J. Phys. Chem. B 116, 5291–5301 (2012).

    CAS  PubMed  Google Scholar 

  32. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    CAS  PubMed  Google Scholar 

  33. Nguyen, R., Allouche, L., Buhler, E. & Giuseppone, N. Dynamic combinatorial evolution within self-replicating supramolecular assemblies. Angew. Chem. Int. Ed. 48, 1093–1096 (2009).

    CAS  Google Scholar 

  34. Bachmann, P. A., Luisi, P. L. & Lang, J. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357, 57–59 (1992).

    CAS  Google Scholar 

  35. Morris, A. M., Watzky, M. A. & Finke, R. G. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim. Biophys. Acta 1794, 375–397 (2009).

    CAS  PubMed  Google Scholar 

  36. Zhao, D. & Moore, J. S. Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org. Biomol. Chem. 1, 3471–3491 (2003).

    CAS  PubMed  Google Scholar 

  37. Baskakov, V., Legname, G., Baldwin, M. A., Prusiner, S. B. & Cohen, F. E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem. 277, 21140–21148 (2002).

    CAS  PubMed  Google Scholar 

  38. Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nature Chem. 6, 893–898 (2014).

    CAS  Google Scholar 

  39. Rupar, P. A., Chabanne, L., Winnik, M. A. & Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337, 559–562 (2012).

    CAS  PubMed  Google Scholar 

  40. Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nature Chem. 2, 566–570 (2010).

    CAS  Google Scholar 

  41. Odian, G. Principles of Polymerization 4th edn (Wiley, 2004).

    Google Scholar 

Download references

Acknowledgements

We thank the University of Strasbourg and the CNRS for financial support. L.D.C. is grateful to the Région Alsace and the Communauté Urbaine de Strasbourg for the award of a Gutenberg Excellence Chair (2011–2012) and to AXA Research funds. We gratefully acknowledge the Fondation CIRFC (Université de Strasbourg), the Région Alsace, the Communauté Urbaine de Strasbourg, the Département du Bas-Rhin and the Ministère de l'Enseignement Supérieur de la Recherche for funding the purchase of the confocal microscope. P. Samorí is gratefully acknowledged for the use of the temperature-dependent UV-vis spectrophotometer. We thank L. Maggini for SEM images, D. Septiady for some help with the confocal microscope and D. Genovese for helpful discussions. E. W. Meijer is gratefully acknowledged for enlightening discussions.

Author information

Authors and Affiliations

Authors

Contributions

The synthesis was performed by A.A., spectroscopic and confocal microscopy experiments were designed, realized and interpreted by A.A. under the supervision of M.M. and L.D.C., and A.A., M.M. and L.D.C. wrote the paper.

Corresponding authors

Correspondence to Matteo Mauro or Luisa De Cola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1135 kb)

Supplementary information

Supplementary Movie 1 (AVI 92823 kb)

Supplementary information

Supplementary Movie 2 (AVI 92840 kb)

Supplementary information

Supplementary Movie 3 (AVI 77204 kb)

Supplementary information

Supplementary Movie 4 (AVI 2341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliprandi, A., Mauro, M. & De Cola, L. Controlling and imaging biomimetic self-assembly. Nature Chem 8, 10–15 (2016). https://doi.org/10.1038/nchem.2383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing