Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Molecular printing

Abstract

Molecular printing techniques, which involve the direct transfer of molecules to a substrate with submicrometre resolution, have been extensively developed over the past decade and have enabled many applications. Arrays of features on this scale have been used to direct materials assembly, in nanoelectronics, and as tools for genetic analysis and disease detection. The past decade has witnessed the maturation of molecular printing led by two synergistic technologies: dip-pen nanolithography and soft lithography. Both are characterized by material and substrate flexibility, but dip-pen nanolithography has unlimited pattern design whereas soft lithography has limited pattern flexibility but is low in cost and has high throughput. Advances in DPN tip arrays and inking methods have increased the throughput and enabled applications such as multiplexed arrays. A new approach to molecular printing, polymer-pen lithography, achieves low-cost, high-throughput and pattern flexibility. This Perspective discusses the evolution and future directions of molecular printing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoscale printing.
Figure 2: Timeline of the historical development of molecular printing or direct ink transfer to a surface.
Figure 3: Advances in DPN throughput.
Figure 4: Polymer-pen lithography.

Similar content being viewed by others

References

  1. Pease, R. F. W. Nanolithography and its prospects as a manufacturing technology. J. Vac. Sci. Technol. B 10, 278–285 (1992).

    Article  CAS  Google Scholar 

  2. Rai-Choudhury, P. (ed.) Handbook of Microlithography, Micromachining and Microfabrication Vol. 1 (SPIE Press, 1997).

    Book  Google Scholar 

  3. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  CAS  Google Scholar 

  4. Wouters, D., Hoeppener, S. & Schubert, U. S. Local probe oxidation of self-assembled monolayers: Templates for the assembly of functional nanostructures. Angew. Chem. Int. Ed. 48, 1732–1739 (2009).

    Article  CAS  Google Scholar 

  5. Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998).

    Article  CAS  Google Scholar 

  6. Gates, B. D. et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    Article  CAS  Google Scholar 

  7. Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 43, 30–35 (2004).

    Article  Google Scholar 

  8. Salaita, K., Wang, Y. & Mirkin, C. A. Applications of dip-pen nanolithography. Nature Nanotech. 2, 145–155 (2007).

    Article  CAS  Google Scholar 

  9. Huo, F. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    Article  CAS  Google Scholar 

  10. Binnig, G., Rohrer, G., Gerber, Ch. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    Article  Google Scholar 

  11. Binnig, G., Quate, C. F. & Rohrer, Ch. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  12. Mccarty, G. S. & Weiss, P. S. Scanning probe studies of single nanostructures. Chem. Rev. 99, 1983–1990 (1999).

    Article  CAS  Google Scholar 

  13. Gimzewski, J. K. & Joachim, C. Nanoscale science of single molecules using local probes. Science 283, 1683–1688 (1999).

    Article  CAS  Google Scholar 

  14. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  15. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  CAS  Google Scholar 

  16. Cuberes, M. T., Schlittler, R. R. & Gimzewski, J. K. Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device. Appl. Phys. Lett. 69, 3016–3018 (1996).

    Article  CAS  Google Scholar 

  17. Heyde, M. et al. Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope. Rev. Sci. Instrum. 72, 136–141 (1992).

    Article  Google Scholar 

  18. Liu, J.-F., Cruchon-Dupeyrat, S., Garno, J. C., Frommer, J. & Liu, G.-Y. Three-dimensional nanostructure construction via nanografting: Positive and negative pattern transfer. Nano Lett. 2, 937–940 (2002).

    Article  CAS  Google Scholar 

  19. Minne, S. C., Manalis, S. R., Atalar, A. & Quate, C. F. Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Tech. B 14, 2456–2461 (1996).

    Article  CAS  Google Scholar 

  20. Minne, S. C. et al. Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73, 1742–1744 (1998).

    Article  CAS  Google Scholar 

  21. Moaz, R., Cohen, S. R. & Sagiv, J. Nanoelectrochemical patterning of monolayer surfaces: Toward spatially defined self-assembly of nanostructures. Adv. Mater. 11, 55–61 (1999).

    Article  Google Scholar 

  22. Piner, R. D. et al. Dip-pen nanolithography. Science 283, 661–663 (1999).

    Article  CAS  Google Scholar 

  23. Jaschke, M. & Butt, H.-J. Deposition of organic material by the tip of a scanning force microscope. Langmuir 11, 1061–1064 (1995).

    Article  CAS  Google Scholar 

  24. Ivanisevic, A. et al. Redox-controlled orthogonal assembly of charged nanostructures. J. Am. Chem. Soc. 123, 12424–12425 (2001).

    Article  CAS  Google Scholar 

  25. Nyamjav, D. & Ivanisevic, A. Properties of polyelectrolyte templates generated by dip-pen nanolithography and microcontact printing. Chem. Mater. 16, 5216–5219 (2004).

    Article  CAS  Google Scholar 

  26. Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W. & Mirkin, C. A. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).

    Article  CAS  Google Scholar 

  27. Lee, K.-B. et al. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    Article  CAS  Google Scholar 

  28. Lee, K. B., Lim, J. H. & Mirkin, C. A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125, 5588–5589 (2003).

    Article  CAS  Google Scholar 

  29. Cho, Y. & Ivanisevic, A. TAT peptide immobilization on gold surfaces: A comparison study with a thiolated peptide and alkylthiols using AFM, XPS and FT-IRRAS. J. Phys. Chem. B 109, 6225–6232 (2005).

    Article  CAS  Google Scholar 

  30. Smith, J. C. et al. Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett. 3, 883–886 (2003).

    Article  CAS  Google Scholar 

  31. Vega, R. A. et al. Nanoarrays of single virus particles. Angew. Chem. Int. Ed. 44, 6013–6015 (2005).

    Article  CAS  Google Scholar 

  32. Liu, X. et al. Arras of magnetic nanoparticles patterned via “dip-pen nanolithography”. Adv. Mater. 14, 231–234 (2002).

    Article  Google Scholar 

  33. Gundiah, G. et al. Dip-pen nanolithography with magnetic Fe2O3 nanocrystals. Appl. Phys. Lett. 84, 5341–5343 (2004).

    Article  CAS  Google Scholar 

  34. Ding, L., Li, Y., Chu, H. B., Li, X. M. & Liu, J. Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography. J. Phys. Chem. B 109, 22337–22340 (2005).

    Article  CAS  Google Scholar 

  35. Wang, Y. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad. Sci. USA 103, 2026–2031 (2006).

    Article  CAS  Google Scholar 

  36. Giam, L. R., Wang, Y. & Mirkin, C. A. Nanoscale molecular transport: The case of dip-pen nanolithography. J. Phys. Chem. A 113, 3779–3782 (2009).

    Article  CAS  Google Scholar 

  37. Jang, J. W. et al. Dip-pen nanolithography generated metal photomasks. Small doi:10.1002/smll.200801837 (2009).

  38. Tang, Q. & Shi, S. Q. Preparation of gas sensors via dip-pen nanolithography. Sens. Actuat. B 131, 379–383 (2008).

    Article  CAS  Google Scholar 

  39. Lee, K. B. et al. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Lett. 4, 1869–1872 (2004).

    Article  CAS  Google Scholar 

  40. Yapici, M. K. & Zou, J. Dip pen nanolithography functionalized electrical gaps for multiplexed DNA detection. Anal. Chem. 80, 5899–5904 (2008).

    Article  Google Scholar 

  41. Wang, Y. et al. A self-correcting inking strategy for cantilever arrays addressed by an inkjet printer and used for dip-pen nanolithography. Small 4, 1666–1670 (2008).

    Article  CAS  Google Scholar 

  42. Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993).

    Article  CAS  Google Scholar 

  43. Weibel, D. B. et al. Bacterial printing press that regenerates its ink: Contact-printing bacteria using hydrogel stamps. Langmuir 21, 6436–6342 (2005).

    Article  CAS  Google Scholar 

  44. Zheng, Z., Jang, J.-W., Zheng, G. & Mirkin, C. A. Topographically flat, chemically patterned PDMS stamps made by dip-pen nanolithography. Angew. Chem. Int. Ed. 47, 9951–9954 (2008).

    Article  CAS  Google Scholar 

  45. Suh, K. Y., Khademhosseini, A., Jon, S. & Langer, R. Direct confinement of individual viruses within polyethylene glycol (PEG) nanowells. Nano Lett. 6, 1196–1201 (2006).

    Article  CAS  Google Scholar 

  46. Bettiger, P. et al. The “Millipede”- nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002).

    Article  Google Scholar 

  47. Salaita, K. et al. Sub-100 nm, centimeter scale, parallel dip-pen nanolithography. Small 1, 940–945 (2005).

    Article  CAS  Google Scholar 

  48. Salaita, K. et al. Massively parallel dip-pen nanolithography with 55,000 pen two-dimensional arrays. Angew. Chem. Int. Ed. 45, 7220–7223 (2006).

    Article  CAS  Google Scholar 

  49. Schulze, A. & Downward, J. Navigating gene expression with microarrays— a technology review. Nature Cell Biol. 3, E190–E195 (2001).

    Article  CAS  Google Scholar 

  50. Rodolfa, K. T., Bruckbauer, A., Zhou, D., Korchev, Y. E. & Klenerman, D. Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew. Chem. Int. Ed. 44, 6854–6859 (2005).

    Article  CAS  Google Scholar 

  51. Hong, S. H., Zhu, J. & Mirkin, C. A. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286, 523–525 (1999).

    Article  CAS  Google Scholar 

  52. Hong, S. & Mirkin, C. A. A nanoplotter with both parallel and serial writing capabilities. Science 288, 1808–1811 (2000).

    Article  CAS  Google Scholar 

  53. Hong, J. M., Ozkeskin, F. M. & Zou, J. A micromachined elastomeric tip array for contact printing with variable dot size and density. J. Micromech. Microeng. 18, 015003 (2008).

    Article  Google Scholar 

  54. Salaita, K. et al. Spontaneous “phase separation” of patterned binary alkanethiol mixtures. J. Am. Chem. Soc. 127, 11283–11287 (2005).

    Article  CAS  Google Scholar 

  55. Liu, X. et al. The controlled evolution of a polymer single crystal. Science 307, 1763–1766 (2005).

    Article  CAS  Google Scholar 

  56. Vega, R. A. et al. Monitoring single-cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography. Small 9, 1482–1485 (2007).

    Article  Google Scholar 

  57. Braunschweig, A. B., Senesi, A. J. & Mirkin, C. A. Redox activating dip-pen nanolithography (RA-DPN). J. Am. Chem. Soc. 131, 922–923 (2009).

    Article  CAS  Google Scholar 

  58. Su, M., Li, S. & Dravid, V. Miniaturized chemical multiplexed sensor array. J. Am. Chem. Soc. 125, 9930–9931 (2003).

    Article  CAS  Google Scholar 

  59. DeVinne, T. L. The Invention of Printing (Francis Hart & Co, 1969).

    Google Scholar 

Download references

Acknowledgements

C.A.M. acknowledges AFOSR, NCI-CCNE, DARPA-SPAWAR, and the NSF-NSEC for support of this work. A.B.B. is grateful for an NIH Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Mirkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braunschweig, A., Huo, F. & Mirkin, C. Molecular printing. Nature Chem 1, 353–358 (2009). https://doi.org/10.1038/nchem.258

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing